

GROUND INVESTIGATION REPORT

FOR

PENNY PIE PARK / POGMOOR RECREATION GROUND FOOTBRIDGE

Location: Barnsley

OS Grid Ref : SE 328 064

	Report No:	SL06524-HBPW-xxx-DOC-C-CV-GIR	Client:	Barnsley MBC
HBPW	Rev	B01	Structure:	Penny Pie Park Footbridge
CONSULTING ENGINEERS	Date:	February 2020	OS grid ref:	SE 328 064
CONCEPTING ENGINEERING	Title:	Ground Investigation Report		

This report is to be regarded as confidential to our Client and it is intended for his use only and may not be assigned. Consequently and in accordance with current practice, any liability to any third party in respect of the whole or any part of its contents is hereby expressly excluded. Before the report or any part of it is reproduced or referred to in any document, circular or statement and before its contents or the contents of any part of it are disclosed orally to any third party, our written approval as to the form and context of such a publication or disclosure must be obtained.

Document Control Sheet

			Signature
	Name:	E Needham	1000
Prepared by	Job Title:	Geotechnical Engineer	pp and
Sy	Date:	February 2020	
		Т	
	Name:	A Millard	15-01
Checked by	Job Title:	Principal Geotechnical Engineer	Shill
	Date:	February 2020	CONTRACTOR OF THE CONTRACT
	Name:	J Livesey	
Approved by	Job Title:	Partner	
Бу	Date:	February 2020	

Issue Record

Issue No.	Description	Date
A01	Initial Issue	February 2020

CONTENTS

Page

1.0	INTRODUCTION AND SCOPE OF WORKS	1
1.1	Report Purpose and Objectives	1
1.2	Scope of Works	1
1.3	Limitations	1
2.0	EXISTING INFORMATION	2
2.1	General Information	2
2.2	Existing Geological Data	3
2.3	Site Development History	5
2.4	Existing Ground Investigations	7
3.0	preliminary Conceptual site model	10
3.1	Introduction	10
3.2	Potential Sources	10
3.3	Potential Pathways	11
3.4	Potential Receptors	11
3.5	Preliminary CSM and Risk Assessment	12
4.0	HBPW GROUND INVESTIGATION	
4.1	Objectives	14
4.2	Site Works	14
5.0	Ground Summary	17
5.1	Ground Model	17
5.2	Groundwater Conditions	
5.3	Laboratory Testing	
5.4	Coal and Mining	20
6.0	MATERIAL PROPERTIES	21
6.1	1 Pogmoor Recreation MADE GROUND (Granular)	21
6.2	② Penny Pie Park MADE GROUND (Granular)	21
6.3	③ Penny Pie Park MADE GROUND (Cohesive)	22
6.4	④ Weathered / Reworked Bedrock (Cohesive)	22
6.5	5 Pennine Middle Coal Measures (Rock)	22
6.6	Material Properties Summary	23
7.0	GEOTECHNICAL RISK	

8.0	Design Reccomendations	25
8.1	Foundation Design	.25
8.2	Earthworks Design	.26
8.3	Potential Contamination	.26
9.0	Environmental Assesment	27
9.1	Chemical Testing Results	.27
9.2	Risk Assessment	.28
9.3	Revised Conceptual Site Model	.28
9.4	Recommended Remedial Strategy	.28
9.5	Health & Safety	.28
9.6	Waste Disposal	.29
9.7	Service Pipes	.29
10.0	REFERENCES	30

DRAWINGS

2370414_P - Rev.A: Exploratory Hole Location Plan

APPENDICES

APPENDIX I	Central Alliance Factual Ground Investigation Report
APPENDIX II	Geotechnical Risk Register

Report No: SL06524-HBPW-xxx-DOC-C-CV-GIR Rev B01 Date: February 2020 Title: Ground Investigation Report

GROUND INVESTIGATION REPORT

1.0 INTRODUCTION AND SCOPE OF WORKS

1.1 Report Purpose and Objectives

HBPW LLP (HBPW) was instructed by Barnsley Metropolitan Borough Council (BMBC) to undertake a ground investigation and prepare a Ground Investigation Report (GIR) for the proposed construction of a footbridge over the railway connecting Penny Pie Park and Pogmoor Recreation Ground in Dodworth, Barnsley.

1.2 Scope of Works

The scope of works undertaken in preparing this report includes:

- A brief further review of published and freely available geological and historical information of the site;
- Interpretation of existing ground investigations in the local area;
- Identification of geotechnical risks and other pertinent issues associated with the design, construction and maintenance of the proposed structure, and;
- Discussion of ground conditions with regards to options for the proposed footbridge.

1.3 Limitations

This report has been produced for the sole internal use and reliance of BMBC. It shall not be relied upon by other parties without the express written authority of HBPW. If an unauthorised third party comes into possession of this report, they rely on it at their own risk and the authors owe them no duty of care or skill.

This report considers the proposals for the subject site at the time of issue of the report. Should the scheme change significantly then the implications of recommendations made in this report will need consideration relative to the new proposals.

HBPW have based parts of this report on information sources as detailed within the report text and believes them to be reliable, but cannot and does not guarantee the authenticity or reliability of any third-party information

2.0 EXISTING INFORMATION

This section provides a summary of the findings of publicly available desk study information.

2.1 General Information

Penny Pie Park / Pogmoor Recreation Ground Footbridge is a proposed steel, single span overbridge that will provide pedestrian access between Penny Pie Park and Pogmoor Recreation Ground over the Penistone railway line (Barnsley to Huddersfield).

Figure 2.1.1: Site Location

The site is located west of Barnsley City Centre at approximate grid reference SE 328 064. The Penistone Line is located in a cutting on an approximate east - west axis. Penny Pie Park is located south of the railway and currently consists of an open green area bordered by Pogmoor Road to the west, Dodworth Road/A628 to the south, the Penistone rail line to the north and residential properties to the east. Pogmoor Recreation Ground is located north of the railway and consists of grass football pitches.

Report No: SL06524-HBPW-xxx-DOC-C-CV-GIR Rev B01 Date: February 2020

Ground Investigation Report

Title:

Client: Barnsley MBC Structure: Penny Pie Park Footbridge OS grid ref: SE 328 064

Figure 2.1.2 - Proposed location of footbridge

2.2 Existing Geological Data

2.2.1 Geology

The expected geology for the site is described on BGS Sheet 87 "Barnsley" (1:50,000 scale) and the British Geological Survey (BGS) Geology of Britain Viewer at 1:50,000 scale mapping and can be summarised as follows:

Made Ground

The BGS Sheet 87 "Barnsley" shows made ground present to the south of the railway underlying Penny Pie Park and described these deposits as "mainly colliery spoil and landfill".

Superficial Geology

No superficial deposits are indicated on the site on either the BGS viewer at 1:50,000 scale mapping or Sheet 87 "Barnsley".

Bedrock

The Carboniferous Pennine Middle Coal Measures Formation (hereby referred to as PMCM) forms the bedrock which is typically described as interbedded mudstone, siltstone, sandstone and coal seams.

The BGS Engineering Geology Viewer further describes the PMCM bedrock as consisting of 'medium strong to extremely strong medium to widely jointed thinly to thickly bedded fine to coarse-grained SANDSTONE and very weak to medium strong usually fissured MUDSTONE weathering to a firm to stiff silty clay generally within 2-

6*m* of ground surface. These provide generally good foundation conditions depending on the nature and thickness of the weathered zone.'

No dip arrows are present on or near the vicinity of the site however BGS Sheet 87 "Barnsley" shows the PMCM bedrock generally dipping at approximately 3° to 7° north east across the surrounding area.

Two faults are shown in the vicinity of the site. The St Helens Fault undercuts the site running north east to south west with a south eastern downthrow (magnitude not recorded). To the immediate north of the site the Barebones Fault is shown running north west to south east with a north eastern downthrow (magnitude not recorded).

2.2.2 Coal Seams and Mining

BGS Sheet 87 1:50,000 shows several coal seams outcropping in the vicinity of the site. The Dunsil (Harley) coal seam outcrops on the site of Penny Pie Park, approximately 100m west of the proposed bridge structure dipping north east. The Barnsley and Barnsley Rider coal seams outcrop north east of the structure at a distance of approximately 100m – 200m. These seam dips away from the site and do not undercut the proposed structure.

The Gawber Coal, Swallow Wood Coal, Top Haigh Moor Coal and Low Haigh Moor Coal and Lidget seams outcrop to the south west of the site at distances of approximately 200m to 1500m. Using an average dip of 5° (taken from BGS Sheet 87) and a site elevation of 138mAOD (taken from topographical survey) the depth to the seams below the site level is shown in the table below.

Table 2.1: Coal Seams						
Seam	Seam thickness (m)	Distance to outcrop (m)	Elevation at outcrop (mAOD)	Depth of seam at Site (m)		
Dunsil (Harley)	0 – 1.7	100	138	8.7		
Gawber	0 – 0.7	250	139	20.9		
Swallow Wood	0.2 – 3.7	760	142	62.5		
Top haigh moor	0-4.3	900	142	74.7		
Bottom Haigh Moor	0-2.6	1080	140	92.5		
Lidget	0.3 – 1.5	1380	130	112.7		

Ciria C758 "Abandoned Mine Workings" advises that worked coal seams can propagate upwards to a total of 10 times their seam thickness. In the case of the Gawber Coal, Swallow Wood Coal, Top Haigh Moor Coal and Low Haigh Moor Coal and Lidget seams the depth beneath the site is over 10 times the seam thickness and therefore any historical workings within these seams are unlikely to pose a risk to the structure by propagating to the surface. However, it must be noted that further coal seams may exist between named seams given above and that this does not constitute a full mining risk assessment.

The Coal Authority Viewer indicates that the site is located in a "development high risk area". No past surface or shallow mining has been recorded on the site however there are probable shallow workings to the immediate north of the site likely associated with the Barnsley and Barnsley Rider seams. Several mine entries are surrounding the site are shown however the proposed bridge location is over 50m outside their zone of influence.

It should be noted that there is a risk of unrecorded mine workings and mine entries at the site or within the immediate surrounding area.

2.2.3 Hydrogeology and Hydrology

The BGS Hydrogeology viewer classifies the underlying PMCM formation as a moderately productive aquifer with moderate yields from sandstones and springs.

The DEFRA Magic Map indicates that the PMCM formation is considered to be a Secondary A Aquifer, described as permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. The underlying aquifer carries a medium vulnerability rating described as "have some natural protection resulting in a moderate overall groundwater risk. Activities in these areas should as a minimum follow good practice to ensure they do not cause groundwater pollution".

The Defra "Magic Map" and data.gov website indicates that the site is not located in a groundwater Source Protection Zone (SPZ). Construction work at the site is therefore not likely to affect any abstractions.

The site is located in a "Nitrate Vulnerable Zone".

The Groundsure Viewer shows that the railway has a medium flood risk rating indicating between 1% and 10% chance of flooding annually. The rest of the site is not considered to be at risk from flooding.

2.3 Site Development History

2.3.1 Historical Site Mapping

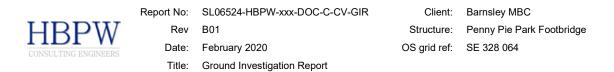
The earliest map found for the site dates to **1855** at 1:10,560 scale. On this map the Penistone railway line is present in its current cutting and alignment. The site is surrounded by agricultural land to both the north and south of the railway and Dodworth Road to the south of Penny Pie Park is present.

On the **1893** OS map at 1:2,500 the railway is shown as having two tracks. The area to the south of the site (Penny Pie Park) has been developed into a brick works with a railway siding and buildings to the west of the site and a clay pit approximately 50m south of the proposed structure. The area to the immediate north of the railway has remained agricultural. Several "Old Shafts" and "Old Clay Pits" have been marked on the map however they are all over 100m from the proposed footbridge location, it is understood anecdotally that the White Hill or Penny Pie Colliery was located between these shafts between 1861 and 1872. Barnsley town shows significant domestic and industrial growth.

The **1906** OS map at 1:2,500 shows that the clay pit for the Penny Pie Park brickworks has expanded to the area immediately south of the site with an additional tramway added. The area to the immediate north of the railway has remained agricultural. To the north east of the site a brickworks is shown.

On the **1931** OS map at 1:2,500 the clay pit to the south of the site is shown in the same location and extents as previous. The fields to the north of the railway appear to have been raised and developed into a "Miners Welfare Recreation Ground" on the location of the current Pogmoor Recreation Grounds. The surrounding area shows additional development with additional housing and infrastructure.

The **1938** and **1956** OS maps at 1:10,560 show little additional development in the immediate vicinity of the site. The brickworks to the south of the railway appear to have been removed with the buildings and tramway removed and clay pits left remaining.


The **1960**, **1961** and **1969** OS map at 1:250, 1:2,500 and 1:1,250 respectively show the area south of the railway as relatively flat with no clay pit present implying that it has been filled during this time. It is understood from anecdotes that the pit was filled primarily with domestic waste. The Recreation Ground to the north has been extended west and the surrounding area has seen continued residential development.

The most recent historical maps are the OS maps from **1983**, **1988** and **1993** at 1:10,000, 1:1,250 and 1:10,000 respectively. These maps show no changes on the site. The area to the south of the railway has been marked as a recreational area with a model railway built to the south west of the site. The Penistone line has been reduced from 2 tracks to 1.

In the **present (2019)** the site area has remained unchanged. To the immediate east of the site a residential street has been developed.

2.3.2 Summary

Based on the observed history, ground obstructions from previous land uses may be expected. The land to the south of the railway (Penny Pie Park) has been the location of a historic clay pit that has been backfilled around 1960. The area to the north of the railway has been raised to accommodate a recreation ground and as a result deep made ground should be expected.

Potential pollutants on the site may be associated with the railways or sites use as a clay pit and landfill site.

The BGS Sheet 87 "Barnsley" shows made ground present to the south of the railway underlying Penny Pie Park and described these deposits as "mainly colliery spoil and landfill".

The Groundsure Viewer shows the land to the north and south of the railway as historic landfill sites. No authorised landfill sites exist within 100m of the site.

2.4 Existing Ground Investigations

2.4.1 BGS Historical Borehole Records

No borehole records are shown exist on the site or within the larger site area of Penny Pie Park or Pogmoor Recreation Ground. Several borehole records are available within a 500m radius of the site.

3 No. shallow boreholes (SE30NW630, 631 and 632) dated January 1989 are present 300-400m north of the site on "Intake Lane". These boreholes all record 0.4m to 0.8m of made ground (not described) overlying light brown clay (likely weathered bedrock) to a depth of 1.2m bgl. Solid bedrock was encountered below 1.2m bgl and is typically described as grey weathered mudstone with occasional laminations, iron nodules and iron staining. All three boreholes terminate under 5m bgl. No water strikes are recorded in any of the boreholes.

2 No. boreholes (SE30NW555 and 20) dated to 1938 are present 400m east of the site recording yellow clay (likely weathered bedrock) to depths of 1.8m and 1.2m respectively overlying solid bedrock. Bedrock is typically described as sandstone and shale with occasional bands of ironstone and thin bands (under 0.5m thick) of coal. The boreholes terminate at 59.4m and 85.4m bgl. Water was struck at 45.7m bgl. A workable coal seam (2.7m thick) was encountered in borehole 555 at 48.5m bgl and a 2.3m band of possible workings (recorded on logs as debris) were recorded in borehole 20 at a depth of 38.6m bgl.

1 No. borehole (SE30NW340) dated to September 1962 is present 500m west of the site located on the Penistone Line. The borehole records firm, grey mottled brown silty clay (likely weathered bedrock) to a depth of 0.9m bgl. Solid bedrock was encountered below 0.9m bgl and is typically described soft friable mudstone and shale. The borehole was terminated at 4.6m bgl. No water strikes were recorded. A 0.4m thick seam of "broken coal" was encountered at 4m.

SL06524-HBPW-xxx-DOC-C-CV-GIR Report No: B01

Rev

Date: February 2020

Ground Investigation Report Title:

Client: Barnsley MBC Structure: Penny Pie Park Footbridge OS grid ref: SE 328 064

Table 2.4: BGS Historical Borehole Summary						
Borehole	Made Ground Depth (m bgl)	Weathered Bedrock Depth (m bgl)	Bedrock Depth (m bgl)	Notes		
SE30NW630	0.0 - 0.4	0.4 – 1.2	1.2 – depth not proven	No water encountered.		
SE30NW631	0.0 – 0.6	0.6 – 1.2	1.2 – depth not proven	No water encountered.		
SE30NW632	0.0 - 0.8	0.8 – 1.2	1.2 – depth not proven	No water encountered.		
SE30NW555	0.0 – 0.3	0.3 – 1.8	1.8 – depth not proven	Water strike at 45.7m bgl. 2.7m coal seam at 48.5m bgl.		
SE30NW20	Not Recorded	0.0 – 1.2	1.2 – depth not proven	Water strike not recorded. 2.2m potential workings at 38.6m bgl.		
SE30NW340	0.0 – 0.3	0.3 – 2.1	2.1 – depth not proven	0.3m of "fragmented coal" at 2.1m bgl		

2.4.2 Abbeydale Site Investigation (November - December 2018)

Penny Pie Park is the location of a proposed gyratory and an intrusive ground investigation was undertaken in December 2018 by Abbeydale to inform design.

Fieldwork was undertaken in from November to December 2018. The investigation comprised:

- 13 No. dynamic sample boreholes (WS1 to WS13) to depths of 3.00m 5.45m. •
- 15 No. dynamic probe boreholes (DP1 to DP15) to depths of 4.90m 10.60m. •
- 4 No. trial trenches (TP1 to TP4) to depths of 3.30m 4.00m. •
- 3 No. cable percussive boreholes (BH1 to BH3) to depths of 6.20m 11.90m. •
- 7 No. Gas monitoring standpipe installs (WS1, Ws6, WS7, WS8, BH1, BH2 and • BH3).
- CBR testing on made ground deposits. •
- Standard penetration tests (SPT) within the boreholes.
- Geotechnical and Geo-environmental laboratory testing. .

The investigation generally found a veneer of topsoil overlying made ground consisting of coal, shale, mudstone, glass, fabric, pottery and general and household waste to a maximum depth of 11.40m. Made ground had highly variable composition with areas of granular and cohesive material throughout. This is consistent with the site history discussed in section 2.3.

SPT data within the made ground classified the strata as loose to very loose. There were occasional high SPT values, possibly caused by cobbles and therefore not representative of the ground as a whole. CBR testing on made ground yielded maximum values of 3%.

Bedrock comprised of weak to extremely weak mudstone typically recovered as gravel.

Groundwater was only encountered in two exploratory holes (BH2 and BH3) at depths of 7.5m and 9.0m respectively.

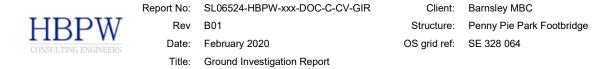
3.0 PRELIMINARY CONCEPTUAL SITE MODEL

3.1 Introduction

This section presents an appraisal of the desk study findings based upon current legislation in order to identify potential risks and contamination issues associated with the site and therefore develop a preliminary conceptual site model (PCSM).

Current best practice recommends that the determination of hazards due to contaminated land is based on the principle of risk assessment, as outlined in Part IIA of the Environmental Protection Act 1990 and detailed within the DEFRA document CLR11, which outlines the framework for the management of contamination. For a risk to be present, there must be a viable pollutant linkage i.e. a mechanism whereby a source impacts upon a receptor via a pathway. A source, pathway and receptor are defined as:

- Source: A substance that is in, on or under the land and has the potential to cause harm or cause pollution to the surrounding environment.
- Pathway: A route or means by which a receptor can or could potentially be exposed to, or affected by, a contaminant.
- Receptor: A living organism, a group of living organisms, controlled waters, an ecological system or piece of property, which is being, or could be, harmed by a contaminant.


Each of these elements can exist independently of one another, but they create a potential risk only where they are linked together, so that a particular contaminant affects a particular receptor through a particular pathway. If all three are identified in this manner, then a 'pollutant linkage' potentially exists.

Using criteria broadly based on those presented in CIRIA Report "Contaminated Land Risk Assessment: A Guide to Good Practice" (CIRIA Report C552), the magnitude of the risk associated with potential pollutant linkages has then been assessed.

3.2 Potential Sources

Based upon the available information, the following are considered potential sources of contamination:

- Made ground associated with historic domestic landfill on the site.
- Potential chemicals associated with the Penistone Line railway.
- Ground gas generation associated with deep made ground, coal seams and backfilled pit.

3.3 Potential Pathways

Based upon the available information, the following are considered potential pathways:

- Inhalation of dust/vapours.
- Ingestion.
- Dermal contact.
- Vertical migration through unsaturated zone (including leaching of contaminants);
- Lateral migration through unsaturated zone.
- Uptake by vegetation.
- Gas/vapour migration through unsaturated zone.

3.4 Potential Receptors

Based upon the available information, the following are considered potential receptors:

- Future site users.
- Offsite neighbouring residents and houses.
- Building materials.
- Construction workers during development.
- Nearby land drains and wells.

	Report No:	SL06524-HBPW-xxx-DOC-C-CV-GIR	Client:	Barnsley MBC
HBPW	Rev	B01	Structure:	Penny Pie Park Footbridge
CONSULTING ENGINEERS	Date:	February 2020	OS grid ref:	SE 328 064
	Title:	Ground Investigation Report		

3.5 Preliminary CSM and Risk Assessment

Potential Source	Potential Pathway	Potential Receptor	Probability	Severity	Risk Rating	Comments
Made ground and Landfill.	Inhalation, ingestion, dermal contact	Future site users	Likely	Moderate	Moderate / Low	Presence of significant contamination deemed unlikely, though low level of contamination may be present as a result of landfill.
	Migration and inhalation of vapours	Offsite neighbouring residents and houses	Unlikely	Moderate	Low	Gas/vapour generation potential of made ground likely to be moderate and contain volatile contamination sources on site based on historical landfill use
	Inhalation, ingestion, dermal contact	Construction workers	Likely	Minor	Low	Appropriate usage of PPE and work practices can mitigate potential risks during construction phase. Chemical testing of made ground recommended to determine risks posed.
	Vertical migration through unsaturated zone (including leaching of contaminants)	Groundwater	Unlikely	Moderate	Low	Migration through bedrock to water table considered unlikely.
	Aggressive attack	Building materials	Unlikely	Moderate	Low	Testing required to determine required concrete grade.
Penistone Line Railway.	Migration and inhalation of vapours	Future site users	Unlikely	Moderate	Low	The railway is and will remained fenced to deter access.
	Inhalation	Construction workers	Unlikely	Moderate	Low	Appropriate usage of PPE and work practices can mitigate potential risks during construction phase. Proposed

HBPW

Report No: SL06524-HBPW-xxx-DOC-C-CV-GIR

B01

Client: Barnsley MBC Structure: Penny Pie Park Footbridge OS grid ref: SE 328 064

Ground Investigation Report Title:

February 2020

Vertical migration through

subsequent inhalation/explosion

unsaturated zone with

Rev

Date:

						work will not require significar earthworks on railway land.
Ground gas from made ground / coal seams or backfilled brick pit.		Future site users	Likely	Severe	Moderate	Made ground associated with historica site development likely to contain organi content and methane gas generation potential.
Shek pit.	Lateral and vertical migration through unsaturated zone with subsequent inhalation/explosion	Offsite neighbouring residents and houses	Likely	Severe	Low / Moderate	
	Vertical migration through unsaturated zone with subsequent inhalation/explosion	Construction workers	Likely	Severe	Low / Moderate	

Likely

Severe

Low /

Moderate

Building

materials

4.0 HBPW GROUND INVESTIGATION

4.1 Objectives

The objectives of the investigation were to address the following:

- Assess the ground conditions (and geotechnical properties) underlying the site to inform the design of the proposed footbridge;
- Assess the potential presence and significance of any contamination that may be present, and;
- Assess the potential risks to human health and controlled water receptors.

4.2 Site Works

An intrusive ground investigation was undertaken by Central Alliance starting on the 3rd December 2019.

The investigation comprised:

- 4 No. dynamic sample boreholes (WS01, WS03, WS05 and WS06A) to depths of 3.45m – 7.45m. 2 No. north of the railway (Pogmoor Recreation Ground) and 2 No. south of the railway (Penny Pie Park). Note; WS06 was aborted due to an obstruction and replaced with WS06A;
- 4 No. rotary boreholes (BH01, BH02, BH03 and BH04) to depths of 10.00m 41.10m. 1 No. 1 No. north of the railway (Pogmoor Recreation Ground) and 3 No. South of the railway (Penny Pie Park);
- 4 No. trial trenches (TT01, TT02, TT03 and TT04) to depths of 3.40m 3.60m to the South of the railway (Penny Pie Park);
- Standard penetration tests (SPT) within the boreholes, and;
- Geotechnical and Geo-environmental laboratory testing.

The exploratory hole logs and laboratory testing are contained in the Central Alliance Ground Investigation Factual Report contained in Appendix I. The locations of the exploratory holes are summarised in the figures below and shown on the Exploratory Hole Location Plan (2370414_P – Rev A) appended to this report.

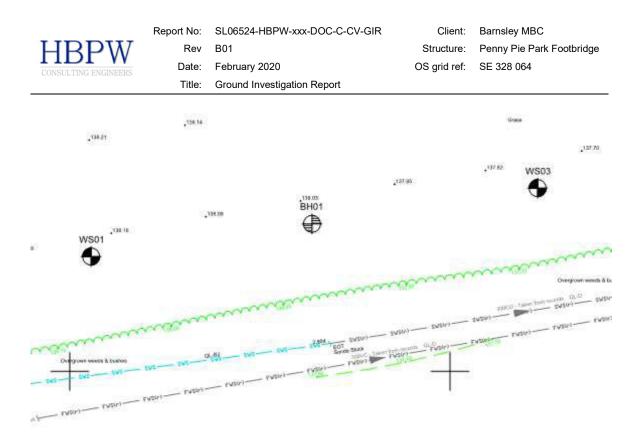


Figure 2.4.1: Site Investigation Layout, North (Pogmoor Recreation Ground)

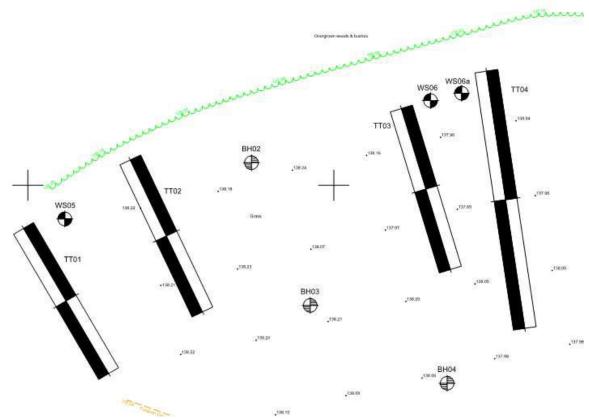
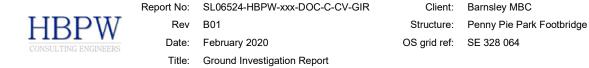


Figure 2.4.2: Site Investigation Layout, South (Penny Pie Park)


 Report No:
 SL06524-HBPW-xxx-DOC-C-CV-GIR

 Rev
 B01

 Date:
 February 2020

 Title:
 Ground Investigation Report

Client: Barnsley MBC Structure: Penny Pie Park Footbridge OS grid ref: SE 328 064

5.0 GROUND SUMMARY

The ground model has been developed using all available ground investigation information.

The ground conditions encountered across the site generally concur with those expected from published geology and the development history.

Generally, the ground conditions comprise a variable thickness and composition of MADE GROUND and landfill overlying reworked/weathered bedrock overlying solid bedrock.

5.1 Ground Model

The ground model to the north and south of the railway is summarised in Table 3.1:A and 3.1:B.

Table 3.1:A - North, Pogmoor Recreation Ground Ground Model						
Strata	Typical description	Typical depths	Comments			
TOPSOIL	Dark brown slightly gravelly sandy organic silt.	0.00 m – 0.10 / 0.15m bgl.	Strip prior to construction.			
MADE GROUND ① (GRANULAR)	Black / brown gravelly clayey SAND. Gravel is of siltstone, mudstone, sandstone, clinker, slag, brick and pottery.	0.10 / 0.15m – 2.00 / 4.60m bgl.	Fill likely used during the construction of the recreation grounds.			
BEDROCK (5) (SILTSTONE)	PMCM. Very weak to moderately weak interbedded siltstone and mudstone.	2.00 / 4.60 m bgl – depth not proven.	Solid bedrock geology.			

Table 3.1:B – South, Penny Pie Park Ground Model						
Strata	Typical description	Typical depths	Comments			
TOPSOIL	Dark brown slightly gravelly sandy organic silt.	0.00 m – 0.10 / 0.20m bgl.	Strip prior to construction.			

Report No: SL06524-HBPW-xxx-DOC-C-CV-GIR

Rev B01

Date: February 2020

Title: Ground Investigation Report

MADE GROUND ② (GRANULAR)	Dark brown slightly clayey gravelly SAND. Gravel is of glass, plastic, clinker, shale, metal, brick and general household waste.	0.10 / 0.20m – 3.90 / 7.10m bgl.	Domestic Landfill. Some larger obstructions such as tyres, numerous glass bottles and concrete were encountered.
MADE GROUND ③ (COHESIVE)	Dark brown mottled red slightly gravelly sandy CLAY. Gravel is brick, siltstone, paper and concrete.	7.10m – 8.60m bgl.	Only Encountered in BH02
WEATHERED / REWORKED BEDROCK ④ (COHESIVE)	Soft light brown grey mottled orange slightly gravelly sandy CLAY. Gravel is sandstone.	8.60- 10.30m bgl.	Only Encountered in BH02
BEDROCK (5) (ROCK)	PMCM. Very weak to moderately strong interbedded Siltstone and Mudstone	3.90 /10.30m bgl – depth not proven.	Solid bedrock geology.

5.2 Groundwater Conditions

During the investigation no water was encountered in any exploratory holes.

5.3 Laboratory Testing

Laboratory testing was conducted on arising's from intrusive investigations (see **Appendix I**). Testing comprised:

- 10 No. PSD tests in granular deposits.
- 4 No. UCS tests on bedrock samples.
- 58 No. Point Load tests bedrock samples.
- 5 No. spectrum analysis tests and Asbestos screens in MADE GROUND deposits to establish the degree of contamination.
- 13 No. BRE SD1 test suites to establish concrete design classes for buried concrete.
- 1 No. WAC test in MADE GROUND.

'										
	Location	Depth	Sample	Cobbles	Gravel	Sand	Silt	Clay		
		(m begl)	Number	(%)	(%)	(%)	(%)	(%)		
	WS01	0.50	5B	0	52	22	26			
	WS01	3.00	15B	0	32	33	3	5		

Particle Size Distribution

Report No: SL06524-HBPW-xxx-DOC-C-CV-GIR

Rev B01

Date: February 2020

Title: Ground Investigation Report

Client: Barnsley MBC Structure: Penny Pie Park Footbridge OS grid ref: SE 328 064

WS03	0.20	2D	0	21	22	57
WS03	1.20	6D	0	56	32	12
WS05	0.50	5B	0	47	35	18
WS05	3.00	11D	0	49	35	16
WS05	6.00	19D	0	70	16	14
WS06A	1.20	5D	0	38	40	22
WS06A	3.00	10D	0	49	33	18
WS06A	4.00	14D	0	51	30	19

Uniaxial Compressive Strength Test

Location	Depth (m begl)	Sample Number	UCS (MPa)	Failure Type
BH01	9.00	1C	0.8	Plastic
BH02	10.40	1C	1.1	Plastic
BH02	14.60	2C	23.0	Axial Cleavage
BH04	6.60	1C	9.7	Axial Cleavage

Point Load Testing

	Depth Sample		Test 1		Test 2	
Location	(m begl)	Number	Point Load Index	Test	Point Load Index	Test
	(iii begi)	Number	(MPa)	Туре	(MPa)	Туре
BH01	5.10	2C	0.16	A+P	0.04	I+L
BH01	5.45	3C	0.14	A+P	0.08	I+L
BH01	5.70	4C	0.08	A+P	0.01	D+L
BH01	6.30	5C	0.12	A+P	0.01	D+L
BH01	6.80	6C	0.10	A+P	0.01	I+L
BH01	7.40	7C	0.01	A+P	0.01	D+L
BH01	7.80	8C	0.38	A+P	0.21	D+L
BH01	8.50	9C	0.03	A+P	0.00	D+L
BH01	9.45	11C	0.12	A+P	0.02	D+L
BH02	10.40	3C	0.45	A+P	0.31	l+L
BH02	11.00	4C	2.15	A+P	1.29	D+L
BH02	11.30	5C	1.87	A+P	0.68	I+L
BH02	11.90	6C	0.42	A+P	0.15	D+L
BH02	12.40	7C	1.86	A+P	0.65	I+P
BH02	12.90	8C	1.19	A+P	0.22	D+L
BH02	14.50	10C	1.09	A+P	0.54	D+L
BH03	6.10	1C	0.98	A+P	0.23	D+L
BH03	7.40	4C	0.47	I	0.35	I+P
BH03	7.60	5C	0.11	A+P	0.05	D+L
BH03	8.60	6C	0.03	A	0.04	D
BH03	9.40	7C	0.03	A	0.02	D
BH03	10.50	9C	0.02	A	0.01	D
BH04	5.70	3C	0.51	A+P	0.28	I+L

Report No: SL06524-HBPW-xxx-DOC-C-CV-GIR

Ground Investigation Report

Rev B01

Title:

Date: February 2020

Client: Barnsley MBC Structure: Penny Pie Park Footbridge OS grid ref: SE 328 064

BH04	6.10	4C	0.03	A+P	0.00	D+L
BH04	6.80	5C	0.74	A+P	0.15	I+L
BH04	7.25	6C	0.28	A+P	0.68	I+P
BH04	7.40	7C	0.41	A+P	0.22	D+L
BH04	8.00	8C	0.08	A+P	0.01	D+L
BH04	9.35	10C	0.26	A+P	0.15	D+L

Note: A=Axial, D=Diametral, I=Irregular, L=Parallel, P=Perpendicular.

BRE SD1 Analy.	sis (Sol	I)
----------------	----------	----

Location	Depth (m begl)	Sample Number	рН	WS S0₄ (mg/l)	WS Mg (mg/l)	Total SO₄ (%)
TT01	1.00	2	7.74	45	5	0.25
TT01	3.00	4	7.32	295	26	0.28
TT02	2.00	3	7.38	107	11	0.35
TT03	2.00	3	7.17	1120	50	0.69
TT04	1.00	2	7.12	395	15	0.35
TT04	3.60	4	3.89	539	84	NA*
WS01	1.00	6	6.78	26	8	0.12
WS01	2.50	11	7.34	101	13	NA
WS03	0.90	5	7.58	45	10	NA
WS05	4.50	14	7.43	1540	76	NA
WS05	5.50	17	7.17	1160	106	NA
WS06A	2.40	8	7.59	115	12	NA
WS06A	3.50	11	7.11	1540	40	NA

Note: *Soil was too acidic to measure total SO₄.

5.4 Coal and Mining

1 No. intact coal seam believed to be the Dunsil or Gawber coal seam was encountered in BH02 at a depth of 22.1m with a thickness of 0.4m. No evidence of previous shallow mining activity was encountered in any of the boreholes including no loss of flush or soft spots.

6.0 MATERIAL PROPERTIES

The ground conditions as encountered in the investigations have been interpreted in order to derive geotechnical material parameters.

Material properties are derived from laboratory testing, in-situ testing and soils descriptions.

6.1 ① Pogmoor Recreation MADE GROUND (Granular)

This strata was encountered as black and brown gravelly clayey SAND. Gravel is of siltstone, mudstone, sandstone, clinker, slag, brick and pottery. The strata was highly variable and as a result classifying accurate and reliable material parameters for design is difficult.

4 No. PSD tests were completed on samples of made ground taken from WS01 and WS03. Based on these tests the average make up of ground is 40% gravel, 27% sand and 33% fines (clay and silt). Based on the soil description, PSD results and BS8004:2015 [2] the angle of shearing resistance is estimated to be between 25° and 30° with a unit weight of 18kN/m³.

3 No. SPTs were carried out in WS01 and WS03 recording SPT N values of 6 (1.2m), 8 (2.0m) and 7 (1.2m). Applying overburden correction factors (after Seed et. al) [3] SPT's are 10, 11 and 11 yielding an average N value of 10.6.

Using Terzaghi's correlation [6] based on the recorded N values, the angle of shearing resistance is calculated as 30° classifying the relative density of this strata as loose to medium dense. It is recommended that a characteristic angle of shearing resistance 28° and unit weight of 18kN/m³ are selected for design.

6.2 **(2)** Penny Pie Park MADE GROUND (Granular)

This strata was encountered as dark brown slightly clayey gravelly SAND. Gravel is of glass, plastic, clinker, shale, metal, brick and general household waste. The strata was highly variable and as a result classifying accurate and reliable material parameters for design is difficult.

6 No. PSD tests were completed on samples of made ground taken from WS05 and WS06A. Based on these tests the average make up of ground is 51% gravel, 31% sand and 18% fines (clay and silt). Based on the soil description, PSD results and BS8004:2015 [2] the angle of shearing resistance is estimated to be between 25° and 30° with a unit weight of 18kN/m³.

11 No. SPTs were carried out in BH02, WS05 and WS06A recording SPT N values of 14 (7.1m), 5 (1.2m), 0 (2.0m), 5 (3.0m), 5 (4.0m), 9 (5.0m), 12 (6.0m), 12 (7.0m), 1 (1.2m), 0 (2.0m) and 3 (3.0m). Applying overburden correction factors (after Seed et. al) [3] SPT's are 12, 8, 0, 7, 6, 9, 11, 10, 2, 0 and 4 yielding an average N value of 6.2.

Using Terzaghi's correlation [6] based on the recorded N values, the angle of shearing resistance is calculated as 28.5° classifying the relative density of this strata as loose. It is recommended that a characteristic angle of shearing resistance 27° and unit weight of 18kN/m³ are selected for design.

6.3 ③ Penny Pie Park MADE GROUND (Cohesive)

This strata was encountered in BH02 as dark brown mottled red slightly gravelly sandy CLAY. Gravel is brick, siltstone, paper and concrete.

1 No. SPT was carried out yielding an N value of 14. Adopting Stroud and Butler's relationship [5] the undrained shear strength of these strata is estimated to be 60kPa and the modulus of volume compressibility is estimated to be $0.16m^2/MN$.

It is recommended that a characteristic design shear strength and modulus of volume compressibility are taken as 50kPa and 0.20m²/MN respectively.

6.4 ④ Weathered / Reworked Bedrock (Cohesive)

This strata was encountered as soft light brown grey mottled orange slightly gravelly sandy CLAY. Gravel is sandstone.

1 No. SPT was carried out yielding an N value of 22. Adopting Stroud and Butler's relationship [5] the undrained shear strength of these strata is estimated to be 100kPa and the modulus of volume compressibility is estimated to be $0.10m^2/MN$.

It is recommended that a characteristic design shear strength and modulus of volume compressibility are taken as 100kPa and 0.10m²/MN respectively.

6.5 (5) Pennine Middle Coal Measures (Rock)

This strata was typically encountered as very weak to moderately weak interbedded siltstone and mudstone. Bedding was typically horizontal.

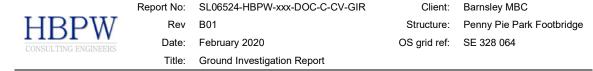
Boreholes BH01, BH02, BH03 and BH04 recorded RQD values of 12, 13, 9, 0, 0, 0, 0, 11, 78, 0, 13, 22, 26, 28, 30, 24, 27 and 11 with an average value of 16.9. This carries a quality classification of "very poor" and a mass factor (j) of 0.2.

4 No. axially oriented Uniaxial Compressive Strength tests were performed on samples of strata recovered from BH01, BH02 and BH04 yielding strengths (q_{uc}) of 0.8, 1.1, 23.0 and 9.7 MPa.

58 No. Point Load Tests were performed on samples of strata taken from BH01, BH02, BH03 and BH04. 28.No tests were axial and yielded an average point load index ($I_{s(50)}$) of 0.488MPa. Tomlinson [3], table 1.4 and table 2.2 estimate the average q_{uc} of mudstone and siltstone coal measures as 8MPa and a ratio between $I_{s(50)}$ and q_{uc} of 13. Using this relationship, the average axially aligned uniaxial compressive strength (q_{uc}) derived from the point load tests is 6.34MPa.

It is recommended that a characteristic unconfined compressive strength of 6MPa and unit weight of 19kN/m³ are selected for design.

6.6 Material Properties Summary


Table 4.7: Proposed Material Properties							
Strata	SPT (N)	Unit Weight (kN/m³)	Cu (kPa)	φ' (°)	Mv (m²/MN)	q _{uc} (MN/m²)	
① Pogmoor Recreation MADE GROUND (Granular)	10.6	18.0	NA	28.0	NA	NA	
② Penny Pie Park MADE GROUND (Granular)	6.2	18.0	NA	27.0	NA	NA	
③ Penny Pie Park MADE GROUND (Cohesive)	14.0	18.0	50	NA	0.20	NA	
 ④ Weathered / Reworked Bedrock (Cohesive) 	22.0	18.5	100	NA	0.10	NA	
(5) PennineMiddle CoalMeasures(Rock)	NA	19.0	NA	NA	NA	6	

7.0 GEOTECHNICAL RISK

Geotechnical risk will be considered for the structure. A geotechnical risk register is included as **Appendix II**.

Where a geotechnical risk also represents an unusual health and safety risk that the Contractor may not normally consider these are communicated via inclusion on the drawings and within the Designer's Risk Assessment.

8.0 DESIGN RECCOMENDATIONS

Design options for the proposed structure have been included in options report SL06524-HBPW-xxx-DOC-C-CV-FEA Rev P02 - Feasibility Study.

8.1 Foundation Design

All current proposed designs for the footbridge involve a lightweight steel deck supported on 2 No. concrete foundations.

The ground model directly beneath the structure comprises a highly variable thickness (2.00m to 8.60m) and composition of uncompacted made ground and landfill. As a result, the use of spread footings is not recommended due to the high risk of both total and differential settlement which could lead to serviceability issues and reduced clearance over the railway. It is recommended that the structure be supported on piles that can be socketed into the PMCM bedrock as this solution will minimise the potential settlement and provide a more consistent foundation on both sides of the footbridge.

Driven or displacement piles could encounter difficulties with drivability as the made ground is highly variable and obstructions such as tyres and concrete are present. Difficulties may also arise from the interbedded siltstone and mudstone. This may be too hard to drive the piles to achieve an adequate socket and as a result these types of piles are not recommended.

Bored piles would require extensive casing throughout the made ground deposits which will increase the price and timeframe of installation.

Continuous Flight Auger (CFA) piles are considered to be an appropriate solution as they will be able to achieve an adequate socket into bedrock and negate the need to case through deep made ground deposits.

It is advised that in designing the piles any potential benefit for the made ground or landfill is discounted as the material is both highly inconsistent and likely to continue settling to some degree potentially causing negative skin friction. For initial designs $300 \text{mm} \text{ } \emptyset$ piles are advised and are expected to require a 2-3m socket into mudstone bedrock to provide adequate support.

CFA piles and the formation of a pile cap will require excavation and removal of potentially hazardous landfill material. Any arisings from the site will have to be correctly categorised and disposed of in a licenced waste facility. WAC testing was performed on a sample of arisings from Penny Pie Park and is included in the Central Alliance factual report (see **Appendix I**).

8.2 Earthworks Design

The bridge may require earth approach ramps in some configurations which will add significant overburden to the highly compressible made ground / landfill deposits. As a result, high amounts of total settlement and differential settlement between the bridge deck and ramps are expected which could lead to additional maintenance and serviceability issues.

If approach ramps are required it is advised that expected potential settlement is assessed and some means of spreading and evenly distributing the additional overburden are utilised such as a relief slab, geogrids and/or a basal mattress.

8.3 Potential Contamination

The made ground beneath the structure is comprised of landfill believed to have been deposited between 1930 and 1960. The ground contains glass, sharps and several potentially harmful products. Additionally, evidence of medical waste was encountered in trial trenches. A more complete assessment has been undertaken in Section 9.

These deposits have been tested for Waste Acceptance Criteria and for several harmful chemicals including Asbestos (see **Appendix I**). It is advised that where possible the amount of landfill material extracted and removed from site is minimised as much as is practically possible.

9.0 ENVIRONMENTAL ASSESMENT

9.1 Chemical Testing Results

The site should be classified as brownfield due to the site development history. The potential sources of contamination onsite are considered to be associated with the former uses.

The site is proposed to be developed with a public pedestrian footbridge, considering this, values for a "Public Open Space (park)" scenario have been adopted at this stage. GAC trigger values have been taken from LQM/CIEH S4UL's (2015).

For the purposes of risk assessment, the following significant strata types were identified:

• (2)/(3) Penny Pie Park Made Ground (Landfill)

The full results of the chemical testing are enclosed as **Appendix I**; however, the results are discussed below:

9.1.1 (2)/(3) Penny Pie Park Made Ground (Landfill)

5 No. soil samples from this strata have been tested for a general suite, including heavy metals, Total Petroleum Hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs). Comparing values against GAC's for public open space only one exceedance was noted.

Sample no 3 from TT01 tested for 2020mg/kg of Lead, exceeding the allowable value of 1300mg/kg. the 4 No. other samples all recorded lead content below the trigger value.

5 No. samples from this horizon have been tested for the presence of asbestos. During the screening no asbestos was identified in any samples.

1 No. samples from this horizon were subjected to Waste Acceptance Criteria (WAC) testing. The results are enclosed within **Appendix I**.

9.1.2 Buried Concrete Design

As a part of the geochemical analysis, soil samples for each strata were analysed for pH and water soluble sulphate.

The results were assessed with BRE Special Digest 1. The site is categorised as a Brownfield location. The groundwater is considered to be mobile.

pH values ranged between 3.89 to 7.74, total sulphate levels between 0.12% and 0.69% and water-soluble sulphate levels ranged between 26 and 1540 mg/l.

In accordance with guidance in BRE Special Digest 1 (2005), the Design Sulphate Class for the soils was indicated to be DS-3. The ACEC Class for foundations within both the made ground and natural soils would be AC-5 in mobile groundwater.

9.2 Risk Assessment

Considering the exceedance of the Lead GAC within the Penny Pie Park made ground (Landfill) and its description, it is considered that the made ground material on site presents a medium risk to the construction workers and end users. Additionally, the presence of glass and potential medical waste poses a potential hazard.

9.3 Revised Conceptual Site Model

The Penny Pie Park made ground (Landfill) has been proven to contain lead concentrations above the GAC values and high concentrations of glass and other sharps. Therefore, this made ground material is not considered suitable for reuse onsite.

A review of the proposed development shows that the majority of the site is to be left unaffected by the footbridge. As a result, the contaminants in the made ground are not considered to pose an increased risk to end users.

9.4 Recommended Remedial Strategy

Based on the results of the investigation, the Revised Conceptual Site Model and the Risk Assessments, it is considered that the made ground (Landfill and General Fill) is not suitable for re-use on site in their current state.

It is recommended that the made ground material currently on site should be either placed below hard standing or if present in landscaped areas be capped with 300mm of clean capping material with a minimum of 150mm of topsoil. Should all made ground be removed from landscaped areas then the requirement for a capping layer will be removed. It is recommended that a Remediation Method Statement (RMS) is completed for the site.

Excavations into made ground should be minimised where practicable and arisings must be disposed of appropriately.

9.5 Health & Safety

During the reclamation and construction phases of the site development it will be necessary to protect the health and safety of site personnel. General guidance on these matters is given in the Health and Safety Executive (HSE) document "Protection of Workers and the General Public during the Redevelopment of Contaminated Land". The guidance is useful whether contamination is present or not.

In summary, the following measures are suggested to provide a minimum level of protection:

- All ground workers should be issued with the relevant protective clothing, footwear and gloves. These protective items should not be removed from the site and personnel should be instructed as to why and how they are to be used;
- Hand-washing and boot-washing facilities should be provided;
- Good practices relating to personal hygiene should be adopted on the site, and;
- The contractor shall satisfy the Health and Safety Executive with regard to any other matters concerning the health, safety and welfare of persons on the site.

9.6 Waste Disposal

Due to the implementation of the Landfill Directive the details of any soils which may require removal from the site should be supplied to the proposed disposal point for clarification on whether a suitable license is held to receive materials with the contamination levels recorded.

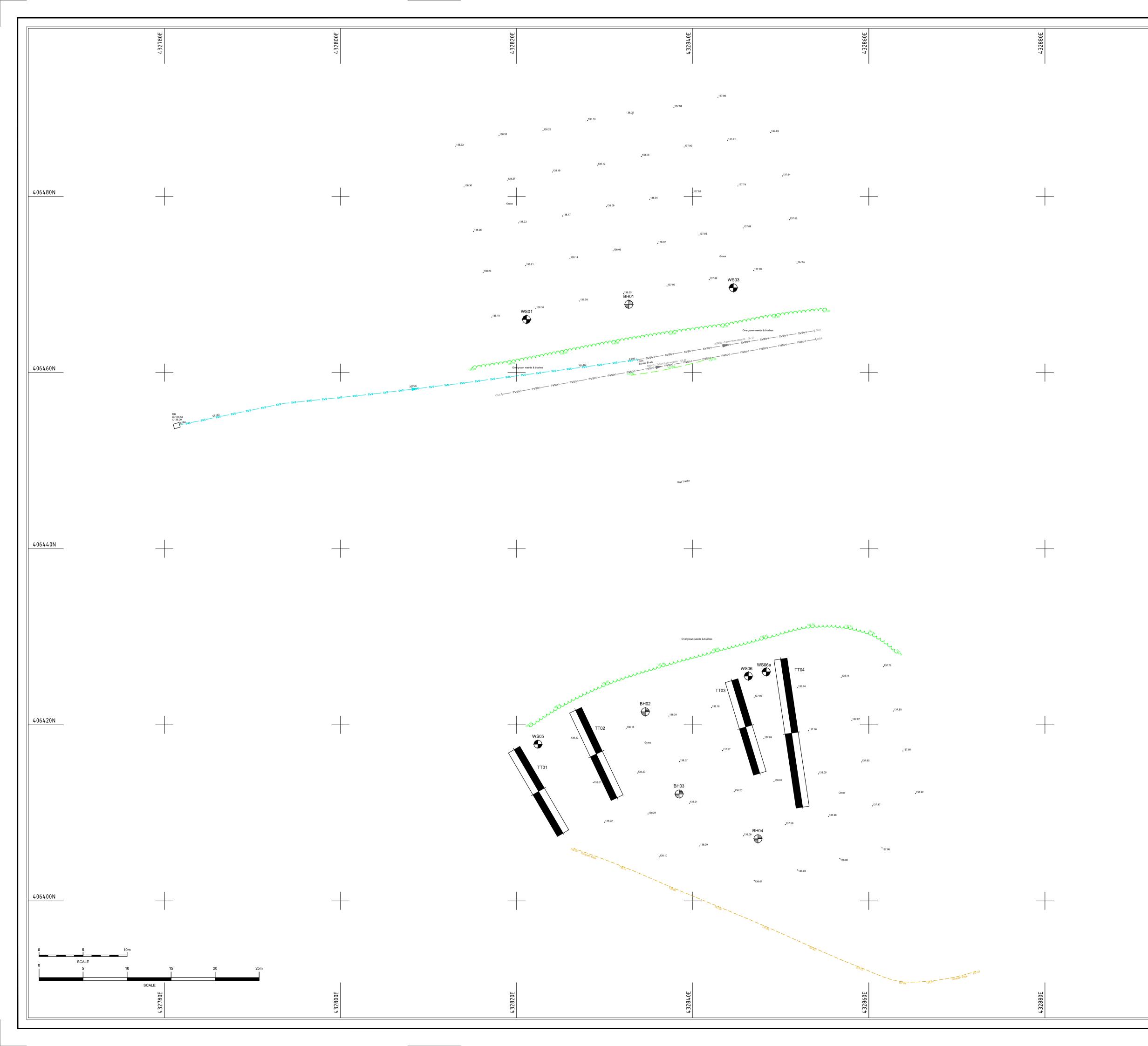
9.7 Service Pipes

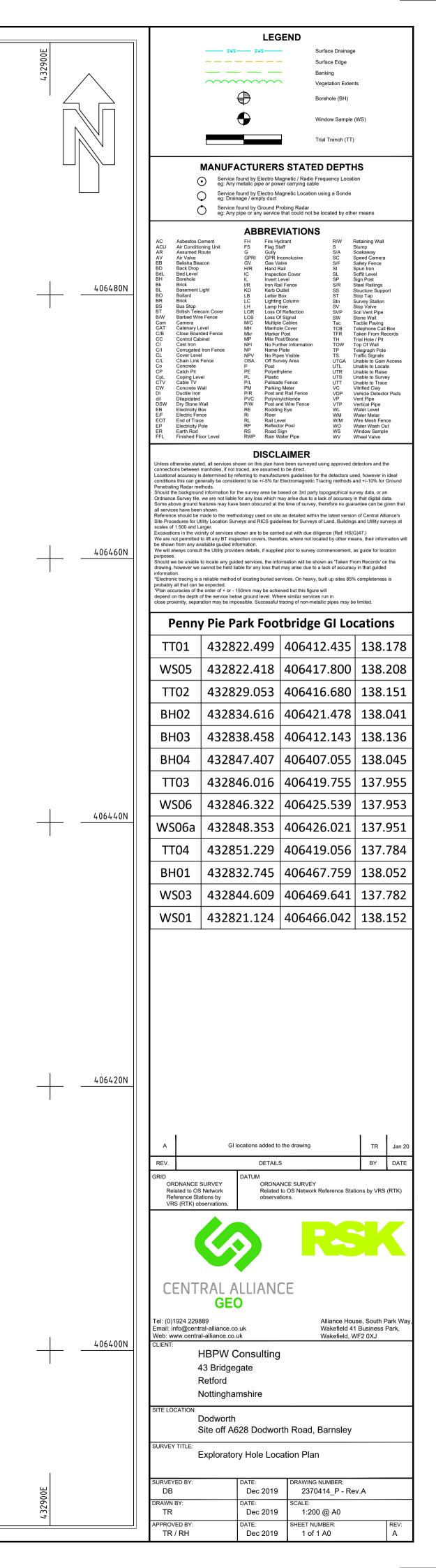
No special precautions to protect water supply mains from soil contaminants are considered necessary.

10.0 REFERENCES

- 1. Design Manual for Roads and Bridges, Volume 4 Section 1, HD22/08 Managing Geotechnical Risk.
- 2. BS8002:2015; Code of practice for foundations.
- 3. Tomlinson, M. J (2001) Foundation Design and Construction 7th edition, Pearson Education Limited, Essex.
- 4. NR/L3/CIV/071 Level 3 Geotechnical Design. 3rd September 2011.
- 5. Stroud MA, and Butler, F, G, 1975, The standard penetration test and The Engineering Properties of Glacial Materials. Proceedings of the European Symposium on Penetration testing,2.
- 6. Terzaghi, K & Peck, R. B (1967) Soil Mechanics in Engineering Practice 2nd Edition.
- 7. Bowles, J. E (1977) Foundation Analysis & Design 2nd Edition.
- 8. BS5930:1999 British Standard, Code of Practice for Site Investigations.
- 9. BRE Special Digest 1, Concrete in Aggressive Ground, September 2001.

 Report No:
 SL06524-HBPW-xxx-DOC-C-CV-GIR


 Rev
 B01


 Date:
 February 2020

 Title:
 Ground Investigation Report

Client: Barnsley MBC Structure: Penny Pie Park Footbridge OS grid ref: SE 328 064

DRAWINGS

APPENDIX I

Central Alliance Ground Investigation Factual Report

Ground Investigation Factual Report

Penny Pie Park/ Pogmoor Recreation Ground Footbridge

HBPW

February 2020

EXPLORE > IDENTIFY > DELIVER

Ground Investigation Factual Report

Penny Pie Park/ Pogmoor Recreation Ground Footbridge

HBPW

February 2020

REPORT	QUALITY ASSURA	ANCE SHEET	
237041	4 -FAC-02	Prepared by	Approved by
01	DRAFT	(Chomo	Jicher Banding
		Eleanor Chapman	Richard Hardwick
		Graduate Geo-Environmental Engineer	Associate Geo-Environmental Engineer
02	FINAL	lun	Juden Derbing
		Thomas Goldsby-West	Richard Hardwick
		Innovation & Research Engineer	Associate Geo-Environmental Engineer
Distribu	ution: HBPW, Barr	nsley MBC	
prepared the expre	for the sole internal us ss written authorisation	e and reliance of the named Employer. This report shou	the approver and designated as 'Final'. This report has been Id not be relied upon or transferred to any other parties without mes into possession of the report they rely on it at their own risk

Penny Pie Park / Pogmoor Recreation Ground Footbridge

GROUND INVESTIGATION FACTUAL REPORT

CONTENTS

1.0	INTR	ODUCTION	2
	1.1	Instruction	2
	1.2	Objectives	
	1.3	Limitations	2
2.0	SITE	DETAILS	3
	2.1	Site Location	3
	2.2	Site Description	3
	2.3	Published Geology	4
		2.3.1 Made Ground	4
		2.3.2 Superficial Deposits	4
		2.3.3 Solid Geology	4
3.0	FIELI	DWORK	5
	3.1	Scope of Fieldwork	5
	3.2		5
	3.3	Dynamic Sampling	5
	3.4	Rotary Boreholes	6
	3.5	Machine Excavated Trial Trenches	6
4.0	LABO	ORATORY TESTING	7
	4.1	Geotechnical Testing	7
	4.2	Chemical Testing	7
		-	

FIGURES

	Cite I a suffere Disus
2370414-FIG-01	Site Location Plan

DRAWINGS

CA-2370414 -GI	Exploratory Hole Location Plan

APPENDICES

А	Exploratory Hole Logs
В	Photographs
С	Geotechnical Laboratory Results
D	Environmental Laboratory Results

1.0 INTRODUCTION

1.1 Instruction

Central Alliance Pre-Construction Services Limited (Central Alliance) was instructed by HBPW (on behalf of Barnsley Metropolitan Borough Council) to undertake intrusive ground investigation at their site in Barnsley at Penny Pie Park adjacent to Dodworth Road and at Pogmoor Recreational Ground adjacent to Pogmoor Road.

The scope of the investigation was designed by HBPW with final exploratory hole locations agreed between HBPW and Central Alliance, following consideration of the existing site conditions and site access restrictions.

1.2 Objectives

The objective was to obtain geological data across the site, to establish geotechnical properties and investigate presence of below ground contamination for a new proposed pedestrian footbridge over the railway.

The aim of this report is to present the findings and information obtained during the ground investigation and includes the following;

- A factual description of the work undertaken.
- Maps and plans.
- Exploratory hole logs and Photographs.
- Laboratory testing results.

1.3 Limitations

This report presents a description of the site at the time of the fieldwork, results of the fieldwork and in-situ testing undertaken, strata encountered and geotechnical and geo-environmental laboratory test results.

Any of the comments and opinions contained within this report, are based on the information obtained by Central Alliance during the investigation.

There may be other conditions prevailing at the site which have not been disclosed by this investigation and which have not been considered by this report. Responsibility cannot be accepted for conditions at the site not revealed by the investigation and confirmation of intermediate ground conditions between exploratory holes should be considered if deemed necessary.

Unless instructed by the client Central Alliance is not obliged to and disclaims any obligation to update the report for events taking place after the date on which this investigation was undertaken.

This report has been produced for the use by HBPW and Barnsley Metropolitan Borough Council. No other third parties may rely upon or reproduce the contents of this report without the written permission of Central Alliance. If any unauthorised third party comes into possession of this report, they rely on it at their own risk and the authors do not owe them any Duty of Care or Skill.

2.0 SITE DETAILS

2.1 Site Location

The site is in the Pogmoor area of Barnsley and is bisected by a railway line. The southern side of the railway line incorporates Penny Pie Park and is located off Dodworth Road, S75 2EN at GR SE328064. The area of the site on the northern side of the railway line, incorporates Pogmoor Recreational Ground, and is located off Pogmoor Road. Access is from Glendale Close.

A Site Location Plan showing the site extents is provided as Figure No. 1.

Figure 2370414.-FIG-01 – Site Location Plan

2.2 Site Description

Penny Pie Park and Pogmoor Recreation Ground are located on the southern and northern side of the railway line which runs in a north east, south west orientation. Pogmoor Recreation Ground is relatively flat lying and includes a number of grassed sports pitches. The site on the southern side of the railway line known as Penny Pie Park has undulating ground in places, protected trees along the edge of the park and in the centre of the park and pedestrian pathways throughout. In the north east corner of Penny Pie Park there was Japanese Knotweed which was fenced off prior to the works beginning.

2.3 Published Geology

2.3.1 Made Ground

From the published geology, the site is not indicated to be underlain with deposits of Made Ground, however, historic clay pits and landfill activity are known in this area and therefore made ground is anticipated.

2.3.2 Superficial Deposits

The published geology of the area indicates that there are no superficial deposits at the site however residual soils are anticipated.

2.3.3 Solid Geology

The solid geology comprises of the Carboniferous Pennine Middle Coal Measures Formation described as Sandstone, Siltstone and Mudstone with coal seams formed approximately 310 – 318 million years ago.

3.0 **FIELDWORK**

3.1 **Scope of Fieldwork**

The ground investigation works were completed by Central Alliance between 4/12/2019 and the 17/12/2019 with works completed during normal weekday shifts.

The investigation was specified by HBPW and included the following works:

- 4 No. Rotary Boreholes (BH01, BH02, BH03, BH04). •
- 4 No. Trial Trenches (TT01, TT02, TT03, TT04).
- 5 No. Window Sample Holes (WS01, WS03, WS05, WS06, WS06A).
- Laboratory Testing. •

The fieldworks were supervised by a suitably qualified Geo-Environmental Engineer provided by Central Alliance. All fieldwork was carried out in general accordance with Eurocode 7, B\$5930 'Code of Practice for Site Investigations' - (2015); B\$10175 'Investigation of potentially contaminated sites - Code of Practice (2001), Association of Geotechnical and Geo-environmental Specialist Guidelines for Good Practice in Site Investigations (August 1998) and logged in accordance with BS EN ISO 14688-1:2004 and BS EN ISO 14688-2 (2004).

The final locations of exploratory holes were determined by the presence of underground services, practicalities and any site access restrictions. The locations of exploratory holes are indicated on drawing CA-2370414-GI with coordinates and levels recorded on the individual exploratory hole logs presented in Appendix A.

3.2 Hand Excavated Inspection Pits

Prior to the drilling of boreholes and where considered necessary, hand excavated inspection pits were completed to a depth of 1.20m bgl, to confirm the absence of buried services. Inspection pits were excavated with caution with CAT (Cable Avoidance Tool) scanning, by a competent person, completed at surface and then at 0.30m intervals throughout. WS06 refused at 0.6m bgl when digging the inspection pit, so was relocated and renamed WS06A.

3.3 **Dynamic Sampling**

4 No. locations (WS01, WS03, WS05 and WS06A) were completed to depths between 3.45m bgl and 7.45m bgl, using a tracked window sample rig. The Dynamic Sampling rig used to complete the works was a Boart Longyear DB501.

The holes were formed using conventional equipment comprising 1 metre long steel cylinders with an internal plastic liner. The steel tubes were repeatedly driven into the ground at progressive depths using rods connected to a percussive hammer on the rig.

Standard Penetration Tests (SPTs) were undertaken in accordance with BS EN ISO 22476-3:2005 using a split spoon sampler at 1 metre intervals. The results of these tests are presented as a Standard Penetration 'N' value or as a blow count for a given penetration at the appropriate position on the borehole log.

The SPT calibration details are presented within the individual exploratory hole records.

Representative disturbed (D), bulk disturbed (B), undisturbed (U) and environmental samples (ES) were taken and placed in sealed containers for transportation to the

laboratory. Depths of samples recovered are shown on the exploratory hole logs presented in Appendix A.

3.4 Rotary Boreholes

Boreholes BH01, BH02, BH03, BH04 were undertaken to depths of between 9.90m bgl and 41.10m bgl.

BH01, BH02, BH03, BH04 were formed using a combination of open hole and rotary coring methods utilising PWF casings and a PWF 1.5 long core barrel with a Polycrystalline Diamond (PCD) core bit and water flush to produce cores of a nominal 92mm diameter.

For full details of the strata encountered, samples taken, in-situ testing and calibration certificates please refer to the individual exploratory hole records presented in Appendix A.

Core photographs are presented in Appendix B of this report.

Boreholes BH02 and BH04 were extended by rotary open hole techniques to depths of 41.10m bgl and 14.50m bgl respectively. All rotary boreholes were completed using a tracked Fraste PLG Rotary Rig.

The open hole sections of boreholes were completed using a roller cone bit and water flush techniques. 1.5m steel casings were used to maintain flush returns and prevent the hole from collapsing in non-cohesive materials.

3.5 Machine Excavated Trial Trenches

4 No. machine excavated trial trenches, were excavated to depths between 3.40m bgl and 3.60m bgl. The trial holes were undertaken using a tracked 360 excavator and terminated due to the machine achieving maximum excavation depth.

Representative disturbed (D), bulk disturbed (B) and environmental samples (ES) were taken and placed in sealed containers or bulk bags for transportation to the laboratory.

Trial trench photographs are presented in Appendix B of this report.

4.0 **LABORATORY TESTING**

4.1 Geotechnical Testing

Laboratory testing was scheduled by HBPW on selected soil and rock samples recovered during the investigation. The samples were sent to Structural Soils Laboratory, at their testing facility in Castleford.

The programme of laboratory testing was carried out in accordance with the laboratory's UKAS accreditation and the guidance given in the British Standard BS1377 (1990): "Methods of Test for Soils for Civil Engineering Purposes" unless stated otherwise.

The following tests have been scheduled on selected samples to date.

Soil:

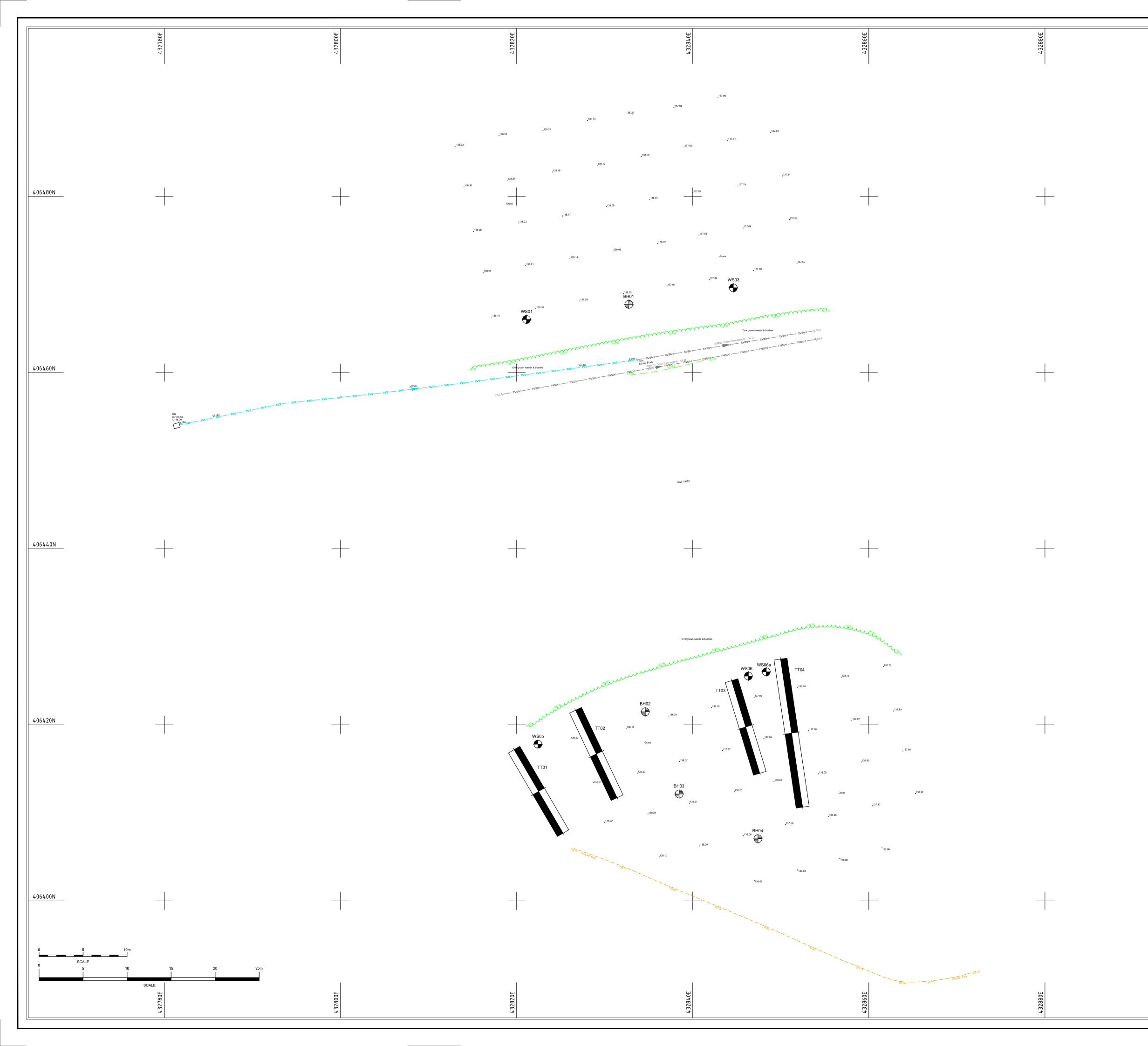
• Particle Size Distribution (Sieve).

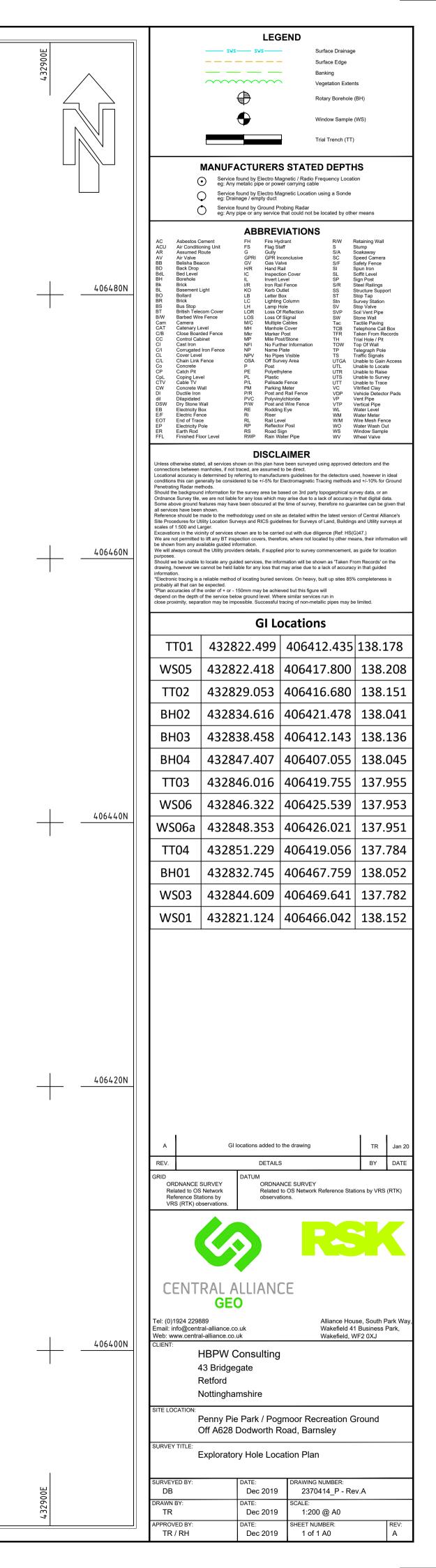
Rock:

- Point Load.
- Unconfined Compressive Strength.

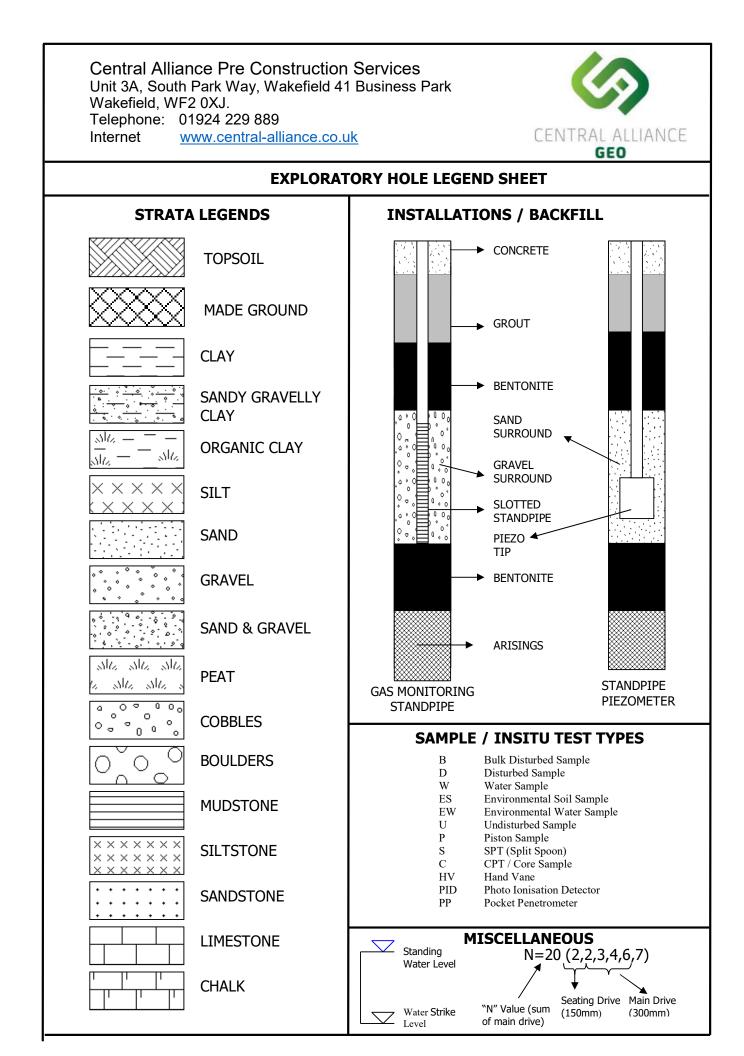
Completed geotechnical laboratory test results are to be presented in Appendix C.

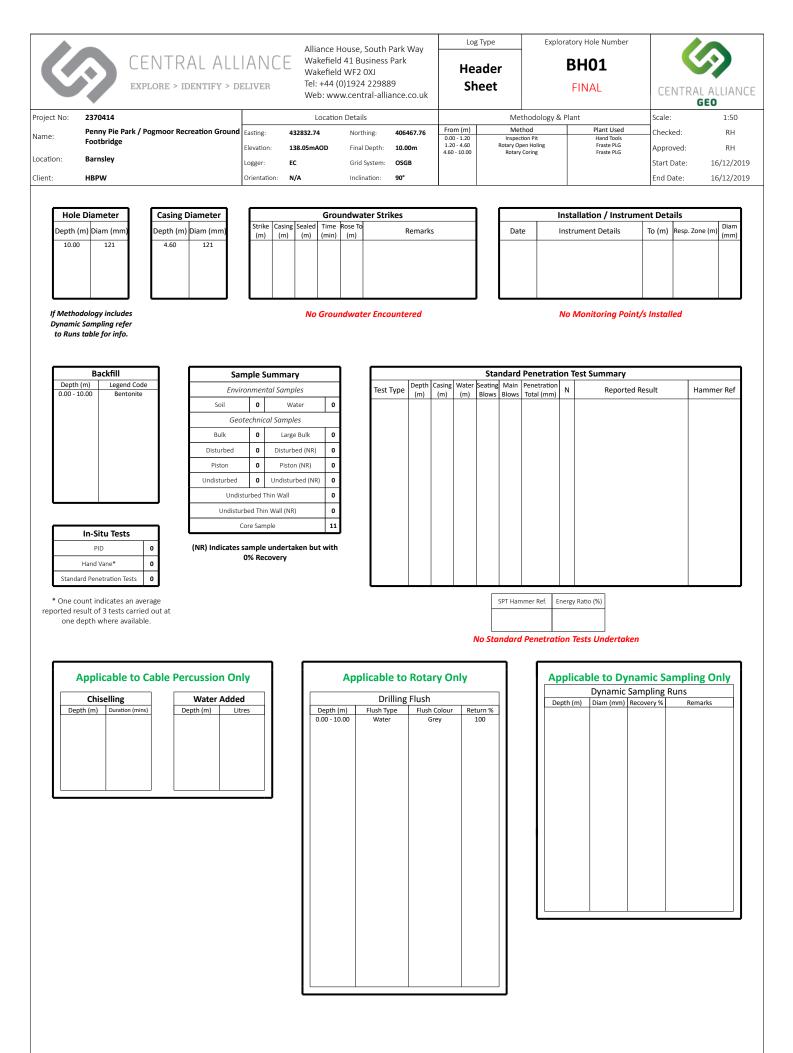
4.2 Chemical Testing

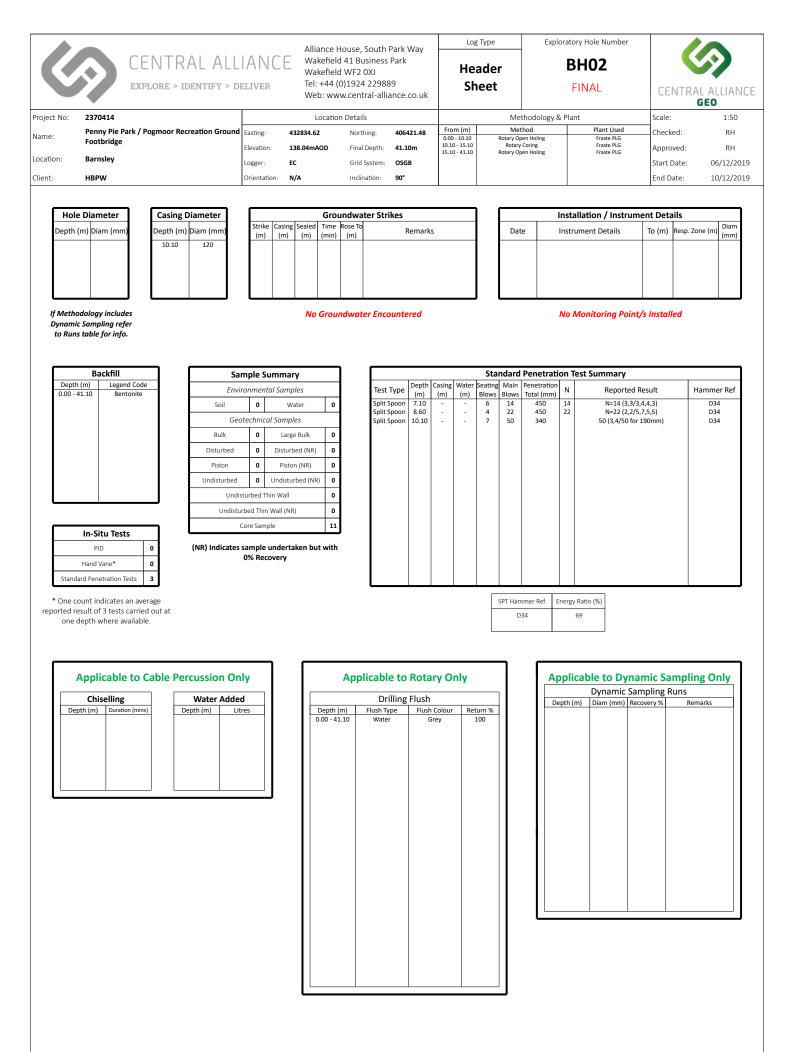

Chemical testing was scheduled by HBPW on selected samples recovered during the ground investigation. The samples were sent to Envirolab Laboratory at their laboratory in Hyde.


All testing was carried out in accordance with the laboratory's UKAS accreditation with the following tests scheduled:

- Asbestos.
- WAC Testing.
- BRE SD1 Full Suite.
- Suite C.

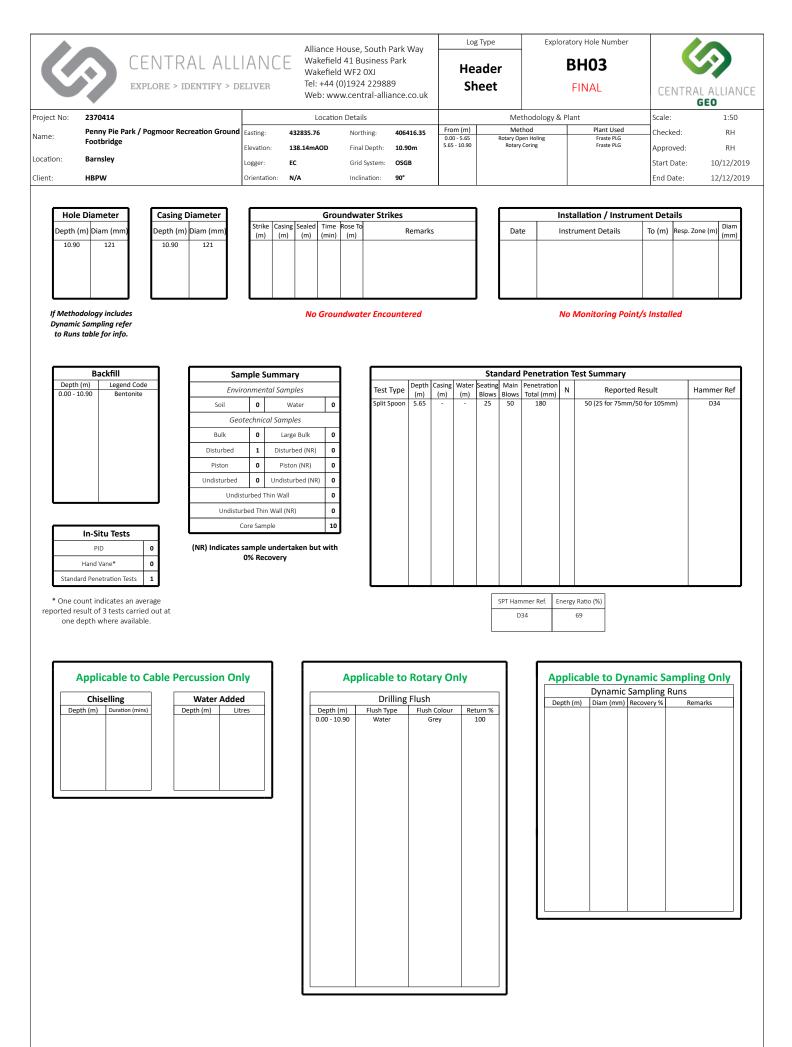

Full details of the chemical analyses are presented in Appendix D.


DRAWINGS



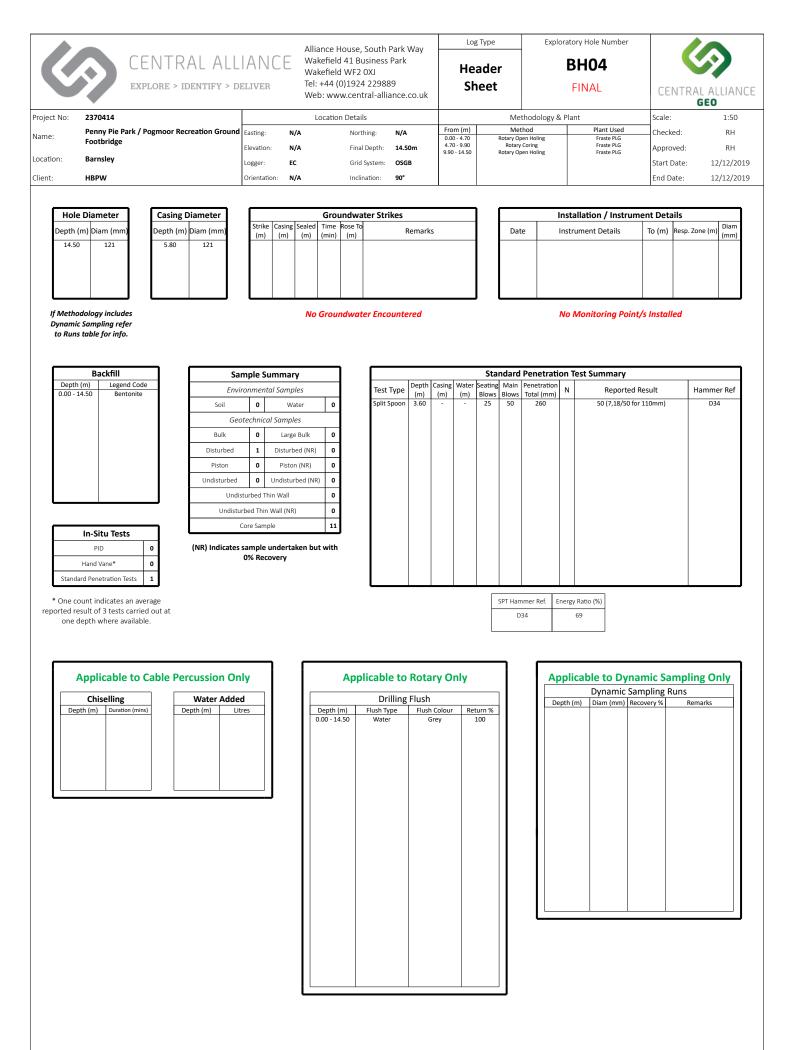
APPENDIX A EXPLORATORY HOLE LOGS

Proje	ect No: 23	CENTRAL ALL EXPLORE > IDENTIFY > DE		Wakefie Wakefie Tel +44 Web: w	eld 41 B eld WF2 (0)1924	usiness I OXJ 229889 tral-allia			Log Comb Bore Sheet	bined hole	Exp	BH			CEN cale:		AL A GEO	D	AN 1:50	
Nam		enny Pie Park / Pogmoor Recreation Ground ootbridge	Easting:	432832.74	Nor	thing:	406467.7		rom (m) .00 - 1.20		thod tion Pit		Plant Used Hand Tools	c	hecke	d By:			RH	1
1.0.00		-	Elevation:	138.05mAOD	Fina	l Depth:	10.00m	1 4.	.20 - 4.60 60 - 10.00		pen Holing / Coring		Fraste PLG Fraste PLG	A	pprove	ed By	/:		RH	
		arnsley	Logged By:	EC		System:	OSGB								tart Da					/2019
Clier	nt: H I	BPW	Orientation:	N/A		nation:	90°			1	1			Fi	inish D)ate:			/12/2	2019
		Strata Description		Legend	Depth (m) (Stratum Thickness)	Reduced Level (mAOD)	Hole Ø (mm) Depth (m)	Casing ((mm) Depth (n	Water	Installation / Backfill	Depth (m)		& Testing Test Results	fethod	Core	TCR	Cori SCR	-	If	<u> </u>
	MADE GRO	OUND: Firm brown sandy CLAY TOPSOIL	with rootlet	ts.	(0.15)		Deput (III)	Deptil (il	1)		Depth (m)	Rei	lest Results	~	Run	ICR	SUR	RQD		├──
	Sand is fine	e to coarse.			0.15 (0.25)	137.90														
	MADE GRC Sand is fine	DUND: Firm light brown mottled grey sa e.	ndy CLAY.		0.40	137.65														
	MADE GRO	OUND: Black gravelly fine to coarse SAN			(0.80)									₽						
1 -	angular fin	e to coarse brick, slag, clinker and potte	ery.		(0.80)															1 -
-					1.20	136.85														
-	MADE GRO	OUND: Landfill (Driller's Description)																		
-																				
2 -																				2 -
																				·
					(3.40)									0						
3 -					(3.40)									Ŕ						3 -
-																				
4 -																				4 -
-																				
-																				
	Soft reddis	h grey mottled brown CLAY.			4.60 (0.08)	133.45 133.37		<u>121</u> 4.60						H				+	NI 17	
-		y weak greyish brown thinly laminated			4.68											ľ			NI	
5 -		ities are closely spaced horizontal tight ravel infilled planar rough.	to open clea	an, (*****							5.10 - 5.17	2 C							_	5-
-	From 4.8	80m to 5.00m and 5.90m to 6.20m recovered as grav	vel.								5.45 - 5.50	3С			4.60 6.10	100	73	12	14	
-				****	(1.72)														14	(·
				****							5.70 - 5.80	4 C				ľ				
6 -				*****													\square		NI	6 -
				× × × × × × × × × × × × × × × × × × ×							6.30 - 6.40	5 C							_	
		mottled orangish brown MUDSTONE. D			6.40	131.65													10	
-	undulating	spaced horizontal open clean, clay and g smooth.	gravel infilie	20	(0.90)						6.80 - 6.85	6 C			6.10	100	80	13	17	
7 -	From 6.9	90m to 7.00m recovered as clayey gravel.			(0.50)										7.60	100			NI	7-
					7.30	130.75								ç						
		grey MUDSTONE. Discontinuities are clo open clean and clay infilled planar smoo									7.40 - 7.50	7C								
											7.80 - 7.95	8C					\square		11	1
8 -																				8 -
															7.60	100	80	9		
											8.50 - 8.60	9 C			8.90					
	From 8.5	50m to 9.10m recovered as gravelly clay.			(2.70)						8.70 - 8.80									
																\square	\vdash	_	NI	
9 -											9.00 - 9.20	10						╞	\neg	9-
											0.4E 0.55	110			8.90	100		0	12	
	From 9.5	55m to 9.65m recovered as clayey gravel.									9.45 - 9.50	11 C			10.00	100	64		NI	
																			12	
10 -		EOH at 10.00m - Scheduled Depth	ı		10.00	128.05	<u>121</u> 10.00				•••••	·				\vdash	\vdash	+	-	10 -
Obse	ervations / Rei	marks	Ν	Visc.	l	Shift In	formatio	<u>ו</u>		·	Backfill			ا ـــا۔۔۔ ا	nstalla	ation:	s			<u> </u>
			pa.	Date	Tin	ne Dep	oth (m) C	asing (m) Water (r	m) From (m) 0.00	To (m) 10.00	Material Bentonite	Instrument D	etails	R	lesp. Z	ione f	Depth	(m)	Diam
			counter	ad nt Instal																
			ater En	Casing Used Monitoring Point Installed										V	Vater S	Strike	es			L
			impu	to Cas									Strike (m) Rises To (m) Tin	ne (min)		F	Remarl	ks	
			ino.	lou																


	¢	CENTRAL ALLI EXPLORE > IDENTIFY > DE		Wakefi Wakefi Tel +44 Web: w	eld 41 B eld WF2 (0)1924 /ww.cer	usiness 0XJ 229889 Itral-allia			Coml Bore	hole		B FI	Hole Number HO2 NAL			AL A GEC)	ANCE
Nam	ation:	2370414 Penny Pie Park / Pogmoor Recreation Ground Footbridge Barnsley HBPW	Elevation: Logged By:	Loca 432834.62 138.04mAOD EC N/A	Fina Grid Incl	thing: al Depth: d System: ination:	406421.4 41.10m OSGB 90°	0. 10 15	rom (m) 00 - 10.10 .10 - 15.10 .10 - 41.10	Me Rotary O Rotar	ethodology & thod pen Holing y Coring pen Holing		Plant Used Fraste PLG Fraste PLG Fraste PLG	Scale: Check Appro Start I Finish	ed By ved B Date:	у: :	06/1 10/1	1:50 RH RH 12/2019 12/2019
		Strata Description		Legend	Depth (m) (Stratum Thickness)	Level	Hole Ø (mm) Depth (m)	Casing Ø (mm) Depth (m	vvaler	Installation / Backfill	Depth (m)	Sample Ref	s & Testing Test Results	Wethod Run	TCF	Cori 8 SCR	_	If
	Gravel i is fine to MADE G	GROUND: Brown slightly gravelly sandy CLA is angular fine to medium sandstone and m o coarse. GROUND: Dark brown to black sandy angula clinker, slag and glass GRAVEL. Sand is fine t	ar fine to		(0.10) 0.10	137.94												
					(7.00)									RD				
	sandy C	GROUND: Firm dark brown mottled red slig CLAY. Gravel is angular to subangular fine to iltstone, paper and concrete. Sand is fine to	medium	,	7.10	130.94							SPT(S) 7.10m, N=14 (3,3/3,4,4,3)					
	CLAY. G	ht brownish grey mottled orange slightly gr ravel is angular to subangular fine to coarse fine to coarse.			8.60	129.44							SPT(S) 8.60m, N=22 (2,2/5,7,5,5)					
.0 -	on/ot- '	Continued on Next Page		diag		CL:0 -					D100				104			10
bse	ervations /	r Kemarks) Groundwater Encountered	Vo Monitoring Point Installed	Tin		nformatior pth (m) C) Water (m) From (m) 0.00		Materia Bentonite		etails Wate	r Strik	Zone [Depth ((m) Dia

	6	CENTRAL explore > ident		- V - V Te	Vakefie Vakefie el +44((ld 41 Bu ld WF2 D)1924	usiness f OXJ 229889			Log Comb Bore Sheet	oined hole	Explo	BI	Hole Number HO2 NAL	CEN	TR/	AL A		NCE
Proje Nam Loca Clien	e: Per Foo tion: Bar	0414 ny Pie Park / Pogmoor Recreatio tbridge nsley PW	Drn Ground Easting: Elevation: Logged By: Orientation:	432834 138.04 EC N/A	4.62	Final Grid	s hing: Depth: System: nation:	406421.4 41.10m OSGB 90°	B Fr	om (m)		thodology &	& Plant	Plant Used	Scale: Checke Approv Start D Finish I	ed By ate:		06/1	::50 RH RH 2/2019 2/2019
		Strata Description			Legend	Depth (m) (Stratum Thickness)	Reduced Level (mAOD)	Hole Ø (mm) Depth (m)	Casing Ø (mm) Depth (m	Water	Installation / Backfill	Depth (m)	Sample Ref	s & Testing Test Results	Vethod Core	TCR	Cor SCR	ing RQD	
	CLAY. Gravel Sand is fine Very dense I sandstone C Extremely w spaced horiz Moderately Discontinuit to open clear <i>From 11.8</i> Moderately Discontinuit	prown subangular to subroun iRAVEL. eak grey MUDSTONE. Discon contal undulating rough tight weak light grey thinly lamina ies are closely spaced horizor in. Om to 12.00m recovered as angular fin strong grey thinly laminated i ies are closely spaced horizor	e to coarse sandstone inded medium to coa ntinuities are closely clean to clay infilled ted SILTSTONE. Intal planar rough tig te to coarse gravel. SILTSTONE.	2		10.10 (0.20) 10.30 (0.45) 10.75 (1.25)	127.94 127.74 127.29 126.04		<u>120</u> 10.10			10.40 - 10.45 10.40 - 10.57 11.00 - 11.10 11.30 - 11.40 11.90 - 12.00	3C 1C 4C 5C 6C	SPT(S) 10.10m, 50 (3,4/50 for 190mm)	10.10 11.60 11.60 12.20	93	63	0 0) 11 - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -		to gravel infilled. Brn to 13.86m recovered as subangular	r fine to course arrayed	* * * * * * * * * * * * * * * * * * * *		(2.18)						12.40 - 12.45 12.90 - 13.00	7C 8C		2 12.20 13.10	100		0	13
- 14 - - - - - -	Weak grey M horizontal p	MUDSTONE. Discontinuities and a subangular AUDSTONE. Discontinuities and lanar rough open clean to cla strong thinly laminated SILTS	re closely spaced ay infilled.	***	****	14.18 (0.42) 14.60	123.86 123.44					13.90 - 14.00 14.50 - 14.60 14.60 - 14.85	9 C 10 C 2 C		14.60	95	71	111	14 -
15		paced horizontal planar roug Ind MUDSTONE (Driller's Deso Continued on Next P arks	cription).			(0.50) 15.10 (7.00)	122.94	formation				15.00 - 15.10	11C		14.60 15.10	98	96	78	
Obse	ervations / Rem	arks		No Monitoring Point Installed	Date	Tim		formatior oth (m) C		Water (r	n) From (m) 0.00	To (m)	Materia Bentoniti		Water	Resp. 2	Zone I	Depth (m) Diam

		CENTRAL ALL explore > identify > di		Wak Wak Tel + Web	nce House efield 41 E efield WF2 44(0)1924 : www.cer	Business 2 OXJ 4 229889 htral-allia	Park		Log T Comb Bore Sheet	bined hole		BH	Hole Number 102 NAL		JTR/	AL AI GEO		
Project Name: Location Client:	Penny Pi Footbridg	e Park / Pogmoor Recreation Ground ge	Easting: Elevation: Logged By: Orientation:	La 432834.62 138.04mAC EC N/A	D Fin Gri Inc	rthing: al Depth: d System: lination:	406421.4 41.10m OSGB 90°		rom (m)		thodology		Plant Used	Scale: Check Appro Start E Finish	ved By Date:	/:	R R 06/12 10/12	50 RH RH 2/2019 2/2019
		Strata Description		Lege	Depth (m (Stratum Thickness	Level	Hole Ø (mm) Depth (m)	Casing Ø (mm) Depth (m	vvater	Installation / Backfill	Depth (m)	Sample: Ref	s & Testing Test Results	Po Hetho Run	TCR	Corin SCR R	_	T
21		IUDSTONE (Driller's Description).		x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X	115.94								Kui				21
- (COAL (Driller's De	escription).			(0.40)													
23 -	SILTSTONE and M	IUDSTONE (Driller's Description).		× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	115.54												23
24				**************************************	× × × × × × × × × × × ×													24
25					****									Q.				25
26				× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×													26
- 27 - - - - - - - - - - - -				× × × × × × × × × × × × × × × × × × ×	****													27
				× ×	× × × × × × × × × × × × ×													28 -
				× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×													29 -
30 -	untions / D-: 1	Continued on Next Page	I.	XXX	××	Ch:0.1					DL CU	.1	· · · · · · · · · · · · · · · · · · ·		lat.			30
Ubsen	vations / Remarks		No Groundwater Encountered	Casing Used No Monitoring Point Installed No Monitoring Point Unstalled	te Tir		nformation pth (m) C		Water (r	n) From (m) 0.00		Material Bentonite		Water	Resp. 3	Zone D	epth (m marks	n) Diam

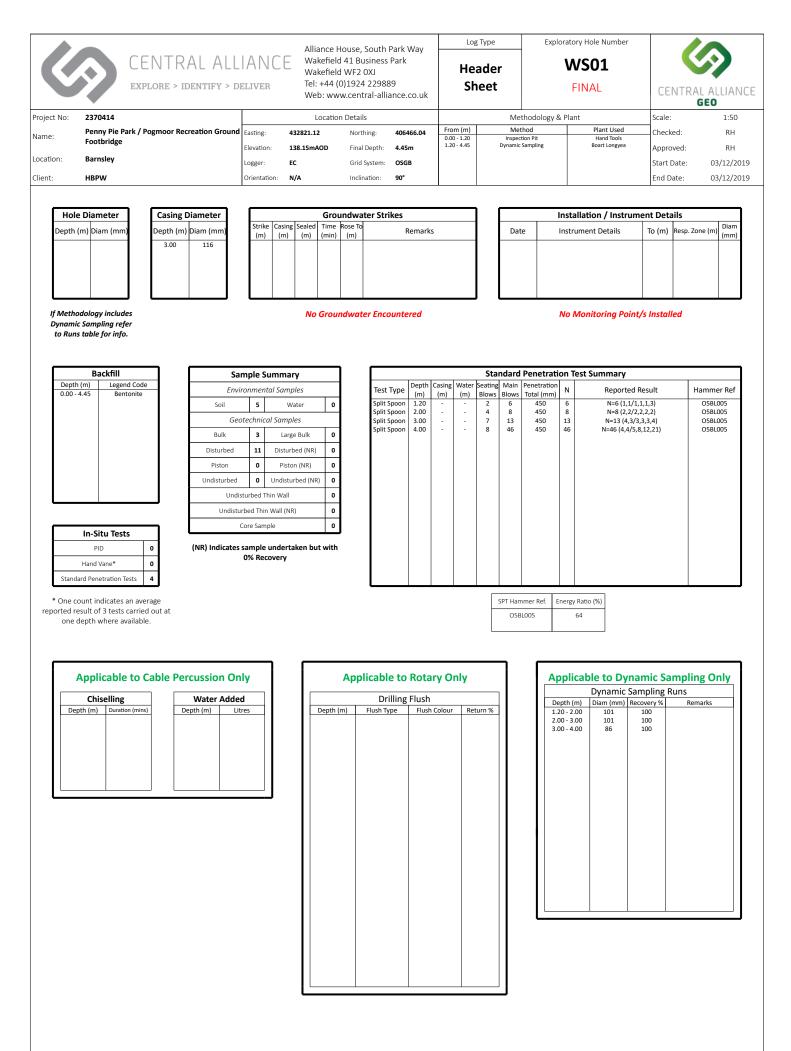

	CENTRAL ALLI EXPLORE > IDENTIFY > DE		Wak Wak Tel +	nce House efield 41 E efield WF2 44(0)1924 : www.cer	Business 2 OXJ 4 229889	Park		Log T Comb Bore Sheet	oined hole	Expl	BH	Hole Number 102 JAL	CEN	TRA		LIANCE
Project No: Name: Location: Client:	2370414 Penny Pie Park / Pogmoor Recreation Ground Footbridge Barnsley HBPW	Easting: Elevation: Logged By: Orientation:	Ld 432834.62 138.04mAC EC N/A	D Fina Grie	ils rthing: al Depth: d System: lination:	406421.4 41.10m OSGB 90°	8 Fr	om (m)		thodology	& Plant	Plant Used	Scale: Checke Approv Start Da Finish [ed By: ate:	C	1:50 RH RH 06/12/2019 0/12/2019
	Strata Description		Leger	Depth (m) Reduced Level	1	Casing Ø (mm)	Water Level (m)	Installation / Backfill		T T	& Testing	De la core		Coring	
31	ONE and MUDSTONE (Driller's Description).			x x x x x x x x x x x x x x x x x x x) (mAOD) (mAOD)	Depth (m)	Depth (m)			Depth (m)	Ref	Test Results			RQL	 if 31 32 32 33 34 34 35 36 37 38 39
- - - - - - 40	Continued on Next Page		× × × × × × × × × × × × × × × × × × ×	***									-			40
Observation	-		Misc.			nformation				Backfill	: :		Install			
		No Groundworter Encountered	Casing Used No Monitoring Point Installed	te Tir	ne De	pth (m) C	Casing (m)	Water (n	n) From (m) 0.00	To (m) 41.10	Material Bentonite	Instrument De	Water	Strikes	5	oth (m) Dian

K	CENTRAL ALLI EXPLORE > IDENTIFY > DE		Wake Wake Tel +4	field 41 B field WF2 4(0)1924	usiness 0XJ 229889			Log T Comb Bore	oined hole	Expl	BH	Hole Number 1 02 JAL	CENT	RAL A GEC		CE
Project No: Name:	2370414 Penny Pie Park / Pogmoor Recreation Ground Footbridge	Easting: Elevation:	432834.62 138.04mAO		ils thing: al Depth:	406421.48 41.10m	Fro	om (m)		thodology thod	& Plant	Plant Used	Scale: Checked Approved		1:50 RH RH	
Location: Client:	Barnsley HBPW	Logged By: Orientation:	EC N/A		d System: ination:	OSGB 90°							Start Dat Finish Da	e:	06/12/20 10/12/20	
	Strata Description		Legen	Depth (m) (Stratum Thickness)	Level	Hole Ø (mm) Depth (m)	Casing Ø (mm) Depth (m)	Water Level (m)	Installation / Backfill	Depth (m)	Samples _{Ref}	& Testing Test Results	Method Core	Corii		
- SILTST - - - - - 41 -	TONE and MUDSTONE (Driller's Description).		× × × × × × × × × × × × × × × × × × ×										- Run			41
	EOH at 41.10m - Scheduled Depth	I		41.10	96.94											-
42																42
43																43
44																44
45																45 -
- 46 - - - - - - - - - - - - - -																46 -
- 47 — - - - - - - - - - - - -																47
- 48 - - - - - - - - -																48
- - 49 — - - - - - - - - - -																- 49 — - - - - - -
50				_												50 —
Observation	ns / Remarks		Misc.			nformation		14/-1. /) [=== (`	Backfill		Inches	Installat		ionth (-)l -	
		Groundwater Encountered	Dat Casing Used No Monitoring Point Installed	e Tin	ne De	pth (m) Ca	ising (m)	Water (n	n) From (m) 0.00	To (m) 41.10	Material Bentonite	Instrument I Strike (m) Rises To	Water St	rikes	emarks	

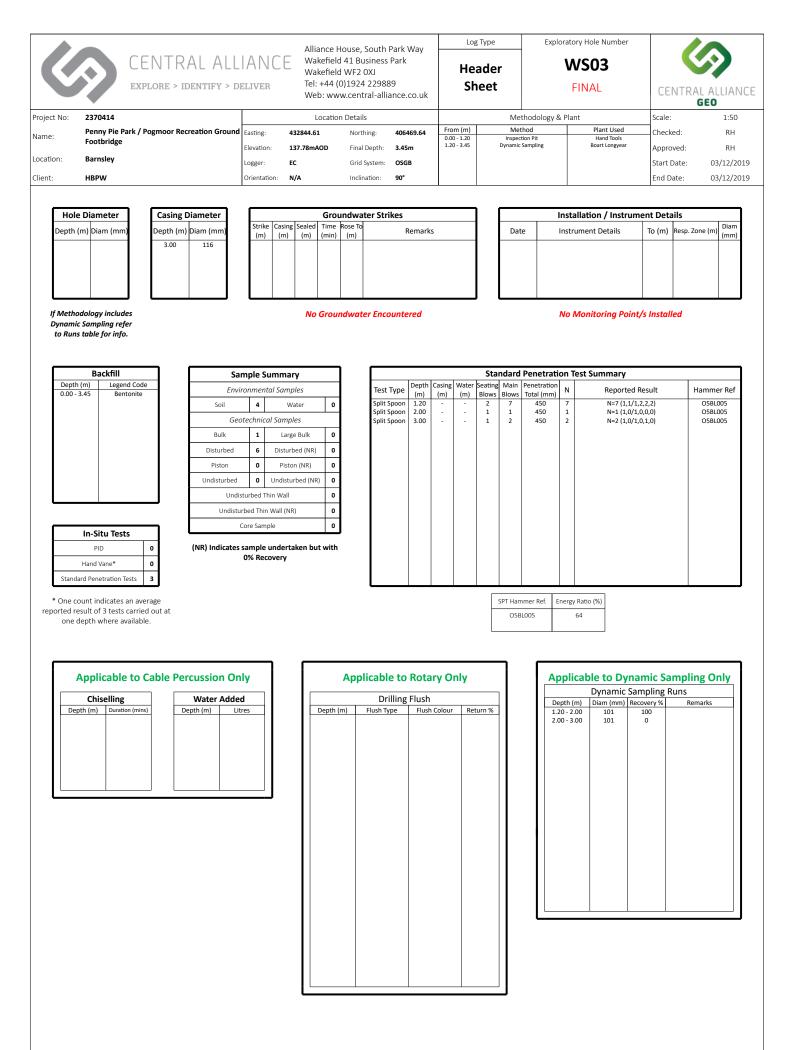
Proje	ect No:	CENTRAL ALL EXPLORE > IDENTIFY > DI		Wak Wak Tel + Web	nce House efield 41 E efield WF2 44(0)1924 : www.cer cation Deta	Business 2 OXJ 1 229889 htral-allia	Park)		Log T Comb Bore Sheet	bined hole	Explo	BH FI	Hole Number 103 NAL	Cl			L A)	ANCE 1:50
Nam	ne:	Penny Pie Park / Pogmoor Recreation Ground	Easting:	432835.76	No	rthing:	406416.3		rom (m)		thod Den Holing		Plant Used Fraste PLG	Che	cked	By:			RH
		Footbridge	Elevation:	138.14mA0	D Fina	al Depth:	10.90m		65 - 10.90	Rotary	Coring		Fraste PLG	App	orove	d By:			RH
Loca	ition:	Barnsley	Logged By:	EC	Gri	d System:	OSGB							Star	rt Dat	te:		10/1	12/2019
Clien	nt:	НВРЖ	Orientation:	N/A		lination:	90°			1	1			Fini	sh Da	ate:			12/2019
		Strata Description		Leger		Level	Hole Ø (mm)	Casing ((mm)	Water	Installation / Backfill		-	s & Testing	lethod	ore		Cori	-	
	MADE G	SROUND: Landfill. (Drillers Description).			(5.65)) (mAOD)	Depth (m)	Depth (n n			Depth (m)	Ref	Test Results		Run	TCR	SCR I	RQD	۱۴ ۱- 2- 3- 3- 4-
	orange S Modera SILTSTOI undulati From roug Modera Disconti with clav From	o moderately strong laminated grey mottle SILTSTONE recovered as silt. tely strong thinly laminated light to dark g NE. Discontinuities are closely spaced horizont ing rough gravel infill. 5.50m to 6.28m discontinuities widely spaced horizont h clean. tely strong structureless grey MUDSTONE inuities are widely spaced horizontal undu y/gravel infill. 6.48m to 6.95m recovered as a very gravelly cloy. 6.78m to 6.95m non intact.	grey izontal al undulating Ilating smoot		<pre></pre>	132.49 132.38 131.86 130.92					5.65 - 5.83 6.10 - 6.20 6.40 - 6.50 7.00 - 7.10	1C 2C 3C	SPT(S) 5.65m, 50 (25 for 75mm/50 for 105mm)		6.65	80	6	0	9 23 6 NI 10 NI 20
_		n 6.95m to 7.22m locally recovered as a firm gravelly cla o moderately weak some very thinly lamin			(0.60)						7.40 - 7.45	4 C						1	20
-	grey ML	JDSTONE. Discontinuities are widely space			(0.00)						7.60 - 7.70	5 C			.00	47	13	13	NI
- 8	No reco	17.53m to 7.82m recovered as a clay. very, assumed zone of core loss.			7.82 (0.68) 8.50	130.32								RC RC	1.50		13		8 - NR
	grey ML	o moderately weak some very thinly lamin JDSTONE recovered as clay. Discontinuitie		ey	(0.53)						8.60 - 8.65	6 C						1	12
9 -		horizontal smooth clean. tely strong thinly laminated grey SILTSTON		× × ×	9.03	129.11									1.50 9.60	64	0	22	9 - NR
1	From	n 9.03m to 9.23 non intact.	¥L.		(0.20) 9.23	128.91												ŀ	-
-	No reco	very, assumed zone of core loss.			(0.37)	1					9.40 - 9.50	7 C						٢	NR
1	Modera	tely strong structureless dark and light gre	ey MUDSTON	IE.	9.60	128.54					9.70 - 9.80	8 C				+	+		NI
-	Disconti	inuities are closely spaced rough with clay	infill.																20
10		Continued on Next Page				1					•••••							1	10 -
Obse	ervations /	Remarks	Ν	/lisc.			nformatio		·		Backfill				tallat				
			No Groundwater Encountered	Casing Used No Monitoring Point Installed	te Tir	ne De	pth (m) C	Casing (m) Water (r	m) From (m) 0.00	To (m) 10.90	Materia Bentonite		Wa	ter St	trikes	5	epth (

¢	CENTRAL ALLI EXPLORE > IDENTIFY > DE		Wakefi Wakefi Tel +44 Web: v	e House, eld 41 Bi eld WF2 (0)1924 vww.cen	usiness I OXJ 229889 tral-allia	Park		Log T Comb Bore Sheet 2	hole		BH Fir	Hole Number 103 NAL			TR/	AL A GEO)	ANCE
Project No: Name: Location: Client:	2370414 Penny Pie Park / Pogmoor Recreation Ground Footbridge Barnsley HBPW	Elevation: Logged By:	Loca 432835.76 138.14mAOD EC N/A	Fina Grid	ls thing: I Depth: System: nation:	406416.3 10.90m OSGB 90°	5 Fro	om (m)		thodology 8		Plant Used	C A Si	cale: heckec pprove cart Da nish D	ed By ite:	:	10/: 12/:	1:50 RH RH 12/2019 12/2019
	Strata Description		Legend	Depth (m) (Stratum Thickness)	Reduced Level (mAOD)	Hole Ø (mm) Depth (m)	Casing Ø (mm) Depth (m)	Water Level (m)	Installation / Backfill	Depth (m)	Samples _{Ref}	& Testing Test Results	Method	Core Run	TCR	Corii SCR	_	If
- Fro	om 9.70m to 10.90m locally recovered as gravelly clay.			(1.30)						10.15 - 10.25 10.50 - 10.60	9 C 10 C			9.60 10.90	99	26	26	13
11 -	EOH at 10.90m - Scheduled Depth			10.90	127.24	<u>121</u> 10.90	<u>121</u> 10.90										:	11 -
- - - - - - - - - - - - - - - -																		12 -
13 - - - - - - - - - - - - - - - - - - -																		13 -
14 - - - - - - - - - - - - -																		14 -
- 15 - - - - - - - - - - - - - - -																		15 -
16 - - - - - - - -																		16 -
- 17 - - - - - - - - - - - - - - - - - - -																		17 -
																		18 -
- 19 - - - - - - - - - -																		19 -
20																		20 -
Observations	; / Remarks	untered	No Wontoring Ocea No Wontoring Point Installed	Tim		formation oth (m) C		Water (n	1) From (m) 0.00		Material Bentonite		etails V	Vater S	esp. Z	S	epth	(m) Diam

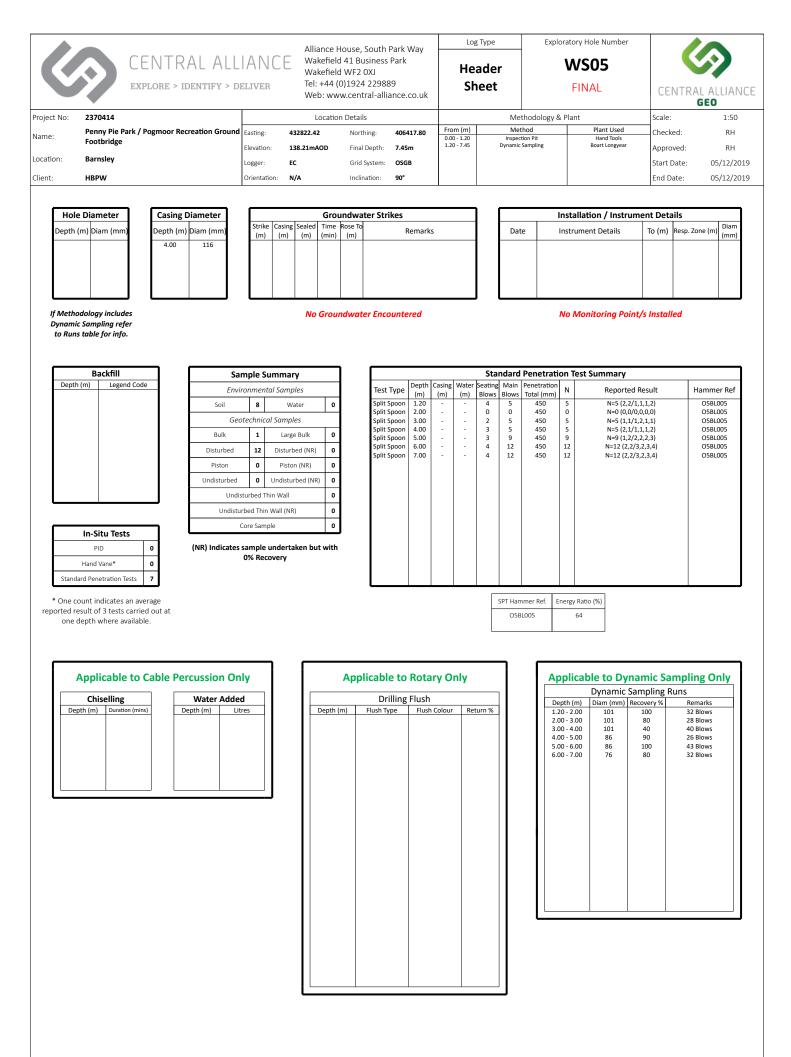
	¢		CENTRAL ALL EXPLORE > IDENTIFY > D		E	Wakefie Wakefie Tel +44(ld 41 Bi ld WF2 0)1924	usiness OXJ 229889			Log T Comb Bore Sheet	oined hole	Expl	BH	Hole Number 104 NAL	(CEN'		AL A		ANCE
Proje Nam Loca Clien	tion:	2370414 Penny Pie P Footbridge Barnsley HBPW	ark / Pogmoor Recreation Ground	Easting: Elevation: Logged By: Orientation:	N/A N/A EC N/A		Fina Grid	ls thing: I Depth: System: nation:	N/A 14.50m OSGB 90°	0. 4.	om (m) 00 - 4.70 70 - 9.90 0 - 14.50	Met Rotary Op Rotary	thodology thod pen Holing coring pen Holing		Plant Used Fraste PLG Fraste PLG Fraste PLG	Cl A St	cale: heckec pprove tart Da inish D	ed By ite:		12/1 12/1	1:50 RH RH 12/2019 12/2019
			Strata Description			Legend	Depth (m) (Stratum Thickness)	Reduced Level (mAOD)	Hole Ø (mm) Depth (m)	Casing Ø (mm) Depth (m	Water Level (m)	Installation / Backfill	Depth (m)	Sample: Ref	s & Testing Test Results	Method	Core	TCR	Cori SCR	-	If
	Very der to subro \GRAVEL	nse light gre ounded fine	ndfill. (Driller's Description) ey mottled brown slightly silty to coarse sandstone, siltstone s Description)				(3.60) 3.60 (0.26) 3.86 (0.84)						3.60 - 3.86	10	SPT(5) 3.60m, 50 (7,18/50 for 110mm)		Run				1 2 3 4
	laminate	ed SILTSTON	light grey mottled burnt orang IE. m recovered as silty subangular fine to c			000	4.70 (0.10) 4.80						4.80 - 4.85	2 C			4.70 5.20	86	38		NI 10 5
	Modera thinly la	<i>Istone gravel.</i> Itely strong t Iminated SIL	to strong light grey with dark g TSTONE. Discontinuities are ho bugh with orange oxidization.	rey bands]		(1.15)			121			5.70 - 5.75	3 C			5.20 5.80	98	64	30 >	-25
- - - - - - - - - - - - - - - - - - -	orange o SILTSTOI undulati Modera laminate smooth	occasionally NE. Disconti ing rough w Itely weak to ed MUDSTC clean.	o moderately strong light grey I laminated interbedded MUDD inuities are horizontal and diag ith clay and gravel infill. o moderately strong light grey DNE. Discontinuities are horizo laminated grey and orange SIL	STONE and gonal occasionall ntal undula	y		5.95 (0.60) 6.55 (0.52) 7.07			<u>121</u> 5.80			6.10 - 6.23 6.60 - 6.83 6.80 - 6.85	4 C 1 C 5 C			5.80 7.30	93	56	24	7 225 3 8 7
	closely s From From	spaced horiz n 7.62m to 7.70 n 7.70m to 7.86	ght grey MUDSTONE. Disconti zontal rough with clay and grav m with occasional laminations. m infilled with black gravel. m recovered locally as gravelly clay.				(0.55) 7.62 (0.90)						7.25 - 7.30 7.40 - 7.50 8.00 - 8.10	6C 7C 8C		RC -	7.30 8.80	99	28	27	NI 9 17 8 NI
			eless MUDSTONE recovered as		r		8.52 (0.28) 8.80						8.70 - 8.80	9 C						_	7
9 1 1 1 1 1 1 1	Disconti From	inuities are	ght grey with dark grey bands horizontal rough with clay and m recovered as gravelly clay. Gravel is ar	gravel infil			(1.10)						9.35 - 9.40	10 C			8.80 9.90	51	11	11	9 6 NI
10 -			Continued on Next Page			× × × × × ×	9.90						9.85 - 9.90	11 C		.		\vdash	\square	╡	10
Obse	ervations /				Misc.				nformatio		1		Backfill				nstalla				
					No Groundwater Encountered Casing Used No Monitoring Point Installed	Date	Tim	ie De	pth (m) C	asing (m)	Water (n	n) From (m) 0.00	To (m) 14.50	Material Bentonite	Strike (m) Rises To (r	V	Vater S		s	epth ((m) Diam

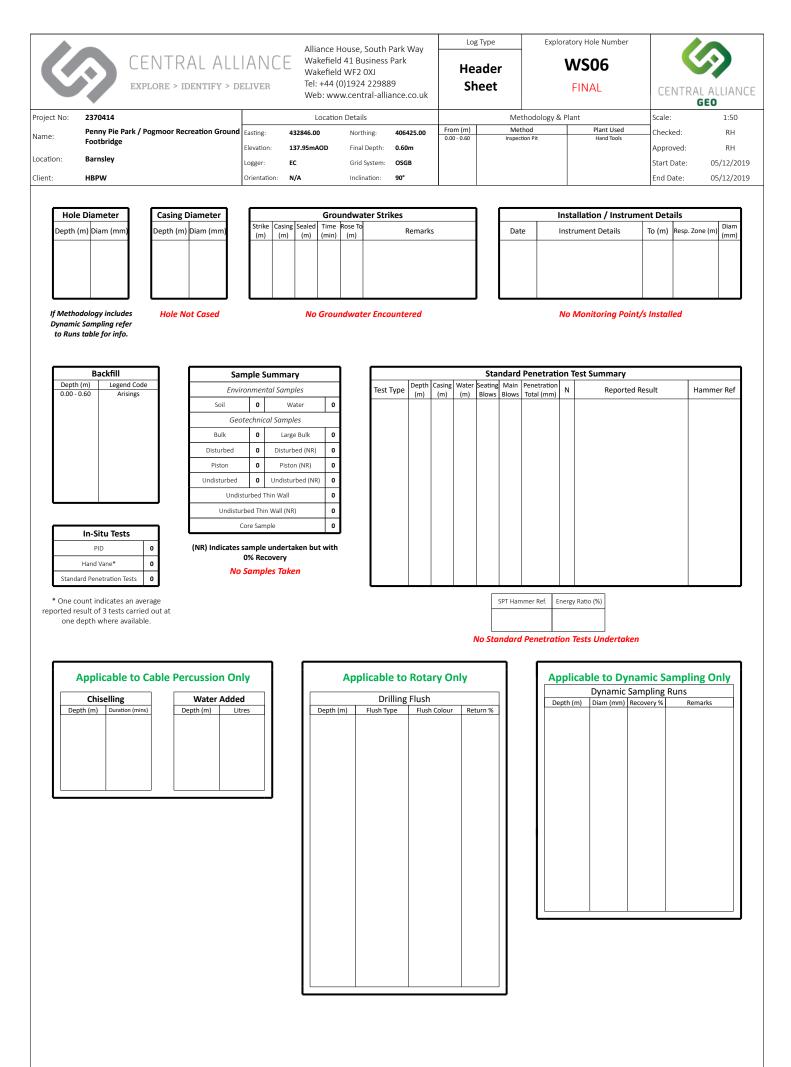

		CENTRAL ALLIANCE explore > identify > deliver						Log T Comb Bore Sheet :	oined hole	Explo	BH	Hole Number 1 04 NAL	CEN			IANCE
Project No: Name: Location: Client:	2370414 Penny Pie Park / Pogmoor Recreation Ground Footbridge Barnsley HBPW	Easting: Elevation: Logged By: Orientation:	Loca N/A N/A EC N/A	Fina Gric	ils thing: al Depth: d System: ination:	N/A 14.50m OSGB 90°	Fro	om (m)		thodology 8	& Plant	Plant Used	Scale: Checker Approve Start Da Finish D	ed By: ate: Date:	12 12	1:50 RH RH 2/12/2019 2/12/2019
	Strata Description		Legend	Depth (m) (Stratum Thickness)	Level	Hole Ø (mm) Depth (m)	Casing Ø (mm) Depth (m)	Water Level (m)	Installation / Backfill	Depth (m)	Samples Ref	& Testing Test Results	Core Run		Coring SCR RQD	lf
11	ONE and MUDSTONE (Drillers description).		X X X X X X X X X X X X X X X X X X X	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>									Q			11 12 13 13 14
15	EOH at 14.50m - Scheduled Depth	1	× × × × × × × × × × × × × × × × × × ×	> 14.50		<u>121</u> 14.50										15
																16
17 -																17
18 -																18
19 - - - - - - - - - - - - - - - - - - -																19
20 Observations	s / Remarks	an D. Consideration For consideration	Miscc. Date Output Date No Wonitoring Point Installed No	Tin		formation pth (m) Ca	sing (m)	Water (n	n) From (m) 0.00		Material Bentonite	Instrument De	Water S	Resp. Zo Strikes		arks

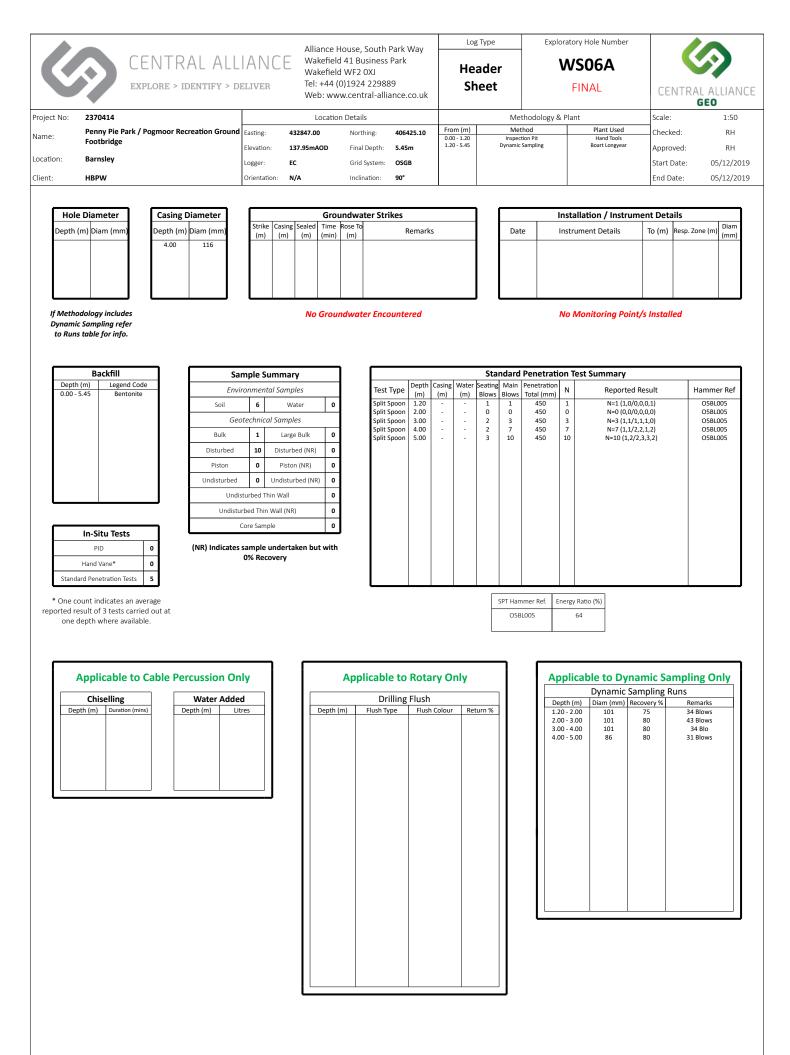
	6	CENTRAL ALLIANCE explore > identify > deliver	Wakefield Wakefield Tel +44(0)1	ouse, South Park 41 Business Park WF2 0XJ 1924 229889 v.central-alliance	¢	Log T Tri Pi Sheet	al it	Explor	TTC		er		
Project I	No: 2370414			Locati	on Details			Met	hodolog	gy & Plant		Scale:	1:30
Name:	Penny Pie F	Park / Pogmoor Recreation Ground Footbridge	Easting:	432822.06	Northing:		.18	Machi	ine Excav	vated Trencl	h	Checked By:	RH
Locatior	n: Barnsley		Elevation: Logger:	138.18mAOD EC	Grid Syste	h: 3.50m						Approved By: Start Date:	RH 04/12/2019
Client:	HBPW		Orientation:		Inclination			Wheele	ed Backh	ioe Excavate	or	Finish Date:	04/12/2019
			I			Depth (m)						Samples & Testing	
		Strata Description			Legend	(Stratum Thickness)	Reduced Level (mAOD)		stallation / Backfill	Depth (m)	Ref	Test Result	s
- M	1ADE GROUND: D	ark brown slightly gravelly fine to coarse SAND	TOPSOIL. GI	ravel is angular		(0.15)							-
fir M	ne to coarse plast 1ADE GROUND: D	ic and metal. ark brownish grey mottled light brown gravelly ne to coarse glass, plastic, pottery, wire, rubble	fine to coar			0.15	138.03			0.50	1 ES 2 ES		1-
2 -	At 1.50m with shell At 2.20m with suba	fragments. ngular to subrounded coarse slag gravel.				(2.75)				2.00	3 ES		2-
		rown mottled light and dark brown slightly grav el is angular fine to medium glass, brick, potter				2.90 (0.60)	135.28			3.00	4 ES		3-
4 -		EOH at 3.50m - Limit of machine				3.50	134.68						4 -
5													5
6 Observa	ations / Remarks				В	reaking Out	/ Hard Strat	a	Stabil	ity & Backfi		Pit Dime	6 -
					From (m		Remarks		oring: No			11.00m	
								SIC					0.60m
								Sta	ability: Ur	nstable			
								Bac	ckfill: Ar	isings		Orientatio 150°	on:


	C	CENTRAL ALLIANCE EXPLORE > IDENTIFY > DELIVER	Wakefield Wakefield Tel +44(0)1	ouse, South Park 41 Business Parl WF2 0XJ 1924 229889 v.central-alliance	< C	Log Tri Tri P Sheet	ial it	Exp	loratory H TT (FIN	02	er	CENTRAL A	
Proje	ct No:	2370414			ion Details			N	1ethodolo	gy & Plant		Scale:	1:30
Name	e: I	Penny Pie Park / Pogmoor Recreation Ground Footbridge	Easting: Elevation:	432829.18 138.15mAOD	Northing: Final Dept	406414	.06	Ma	achine Exca	vated Trenc	h	Checked By: Approved By:	RH RH
Locat	tion:	Barnsley	Logger:	EC	Grid Syste							Start Date:	04/12/2019
Client	t: I	нврш	Orientation:		, Inclination			Wh	eeled Back	noe Excavat	or	Finish Date:	04/12/2019
						Depth (m)	Reduced Level	Water	Installation /			Samples & Testing	
		Strata Description			Legend	(Stratum Thickness)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Test Result	s
		ROUND: Dark brown and grey slightly gravelly fine to coa	irse SAND TO	OPSOIL. Gravel		(0.20)							
		r to subangular fine to medium brick and glass. 0.10m with rootlets.				0.20	137.95						-
	MADE GF	ROUND: Dark brown mottled red slightly clayey gravelly f r fine to coarse plastic, clinker, glass, shale and metal.	fine to coars	e SAND. Gravel									-
	is aliguiai	i fine to coarse plastic, clifiker, glass, shale and metal.								0.50	1 ES		-
													-
													-
	From (0.90m becomes very gravelly with pottery, rope, rubber and wire fragments											-
1 -						X				1.00	2 ES		1 -
													-
													-
													-
						(2.80)							-
													-
													-
2 -	From 2	2.00m to 2.70 with frequent shell fragments.								2.00	3 ES		2 -
													-
													-
													-
													-
	At 2.70	Om frequent subrounded coarse coal gravel.											-
													-
3 -		ROUND: Dark brown and grey slightly gravelly clayey fine	to coorso Si	AND Gravelic		3.00	135.15			3.00	4 ES		3 -
	angular to	o subrounded fine to coarse glass, plastic, coal, wire, sha	ale and potte	ery.		(0.40)							-
						(0.40)							-
		EOH at 3.40m - Limit of machine				3.40	134.75						-
													-
													-
													-
4													4 -
													-
													-
													-
													-
													-
													-
5 -													5
													-
													-
													-
													-
													-
													-
6						-							6 -
Obser	rvations / R	emarks					/ Hard Strat	а	Stabi	lity & Backf	ill	Pit Dime	
					From (m)		Remarks		Shoring: N	one		11.00m	
									Stability: U	nstable			0.60m
									, -			Orientatio	on:
									Backfill: A	risings		150°	

	¢	CENTRAL ALLIANCE EXPLORE > IDENTIFY > DELIVER	Wakefield Wakefield Tel +44(0)2	ouse, South Park 41 Business Parl WF2 0XJ 1924 229889 v.central-alliance	k	Log Tri P Sheet	ial it		TT FIN	AL		CENTRAL A	
Proj	ject No:	2370414			ion Details			N	1ethodolo	gy & Plant		Scale:	1:30
Nan	ne:	Penny Pie Park / Pogmoor Recreation Ground Footbridge	Easting:	432846.18	Northing:		.71	Ma	achine Exca	vated Trenc	h	Checked By:	RH
Loca	ation:	Barnsley	Elevation: Logger:	137.96mAOD EC		th: 3.40m em: OSGB						Approved By: Start Date:	RH 04/12/2019
Clie	nt·	НВРЖ	Orientation:		Inclination			Wh	eeled Backl	noe Excavat	or	Finish Date:	04/12/2019
ene			onenation	. 100									0 1/ 12/ 2015
		Strata Description			Legend	Depth (m) (Stratum Thickness)	Reduced Level (mAOD)	Water Level (m)	Installation / Backfill			Samples & Testing	
-	MADE	GROUND: Dark brown slightly clayey gravelly fine to coarse		SOIL Gravel is		8 (0.10)				Depth (m)	Ref	Test Result	is .
	angula	r fine to coarse brick and clinker.			/	0.10	137.85						
	MADE SAND	GROUND: Dark brown mottled light brown slightly clayey of Gravel is angular medium to coarse glass, brick, clinker, pla	very gravelly astic mudsto	fine to coarse		Š							
		metal and wire.	istic, muuste	ne, pottery,		8							
-						Š				0.50	1 ES		-
-						8							
	At C	0.70m many glass jars.				ŝ							
-						Š							
1 -	At 1	1.00m occasional slag, clinker and shells.				8				1.00	2 ES		1 -
	-					Š							
	1					Š							
						8							:
						(2.90)							-
	1					8							
	1					8							
2 -						ŝ				2.00	3 ES		2 -
-						8							2
-						ŝ							
						Š							
-	Fro	2 F0m becomes very candy acrual				8							-
		m 2.50m becomes very sandy gravel.				ŝ							
-						Š							
						8							
3 -	MADE	GROUND: Dark brown to black sandy angular fine to coars	e ash. clinke	r. shale and		3.00	134.96			3.00	4 ES		3 -
-		GRAVEL. Sand is fine to coarse.	,	,		(0.40)							
	-					(0.40)							
-		EOH at 3.40m - Limit of machine				3.40	134.56						
													-
4 -													4 -
4													4
	1												
-													-
	-												
5 -	1												5 -
	1												
	1												
	1												-
	-												
6 -													6 -
0													0
Obs	ervations	/ Remarks			В	reaking Out	/ Hard Strat	a	Stabi	lity & Backf	ill	Pit Dime	nsions
					From (m		Remarks		Shoring: N			11.00m	1
									J				0.60m
									Stability: U	nstable			0.0011
									Backfill: A	risinøs		Orientatio	on:
					1				Socarin. A			150°	


(CENTRAL ALLIANCE EXPLORE > IDENTIFY > DELIVER	Wakefield Wakefield Tel +44(0)1	buse, South Park 41 Business Parl WF2 0XJ 1924 229889 v.central-alliance	¢	Log Tri Tri P Sheet	al it	Exp	loratory H TT(FIN	04	er	CENTRAL A	
Proje	ect No: 2	370414	Fasting.	Locat 432851.10	ion Details	406419	01	N	1ethodolo	gy & Plant		Scale:	1:30 RH
Nam	e: Po	enny Pie Park / Pogmoor Recreation Ground Footbridge	Easting: Elevation:	432851.10 137.78mAOD	Northing: Final Depth		.91	Ma	achine Exca	vated Trenc	h	Checked By: Approved By:	RH
Loca	tion: B	arnsley	Logger:	RH	Grid Syster			W/b	eeled Backł			Start Date:	04/12/2019
Clien	nt: H	IBPW	Orientation:	150°	Inclination	90°	1	vvn		IOE EXCAVAU	UI	Finish Date:	04/12/2019
		Strata Description			Legend	Depth (m) (Stratum	Reduced Level	Water	Installation /			Samples & Testing	
						Thickness)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Test Result	s
	MADE GRO angular fin	DUND: Soft brown sandy CLAY TOPSOIL. Sand is fine to r DUND: Dark grey and reddish brown gravelly fine to coa ne to coarse clinker and brick.		iravel is		(0.10) 0.10 (0.35)	137.68						-
	MADE GRO	n in extended trench, 1 no. concrete boulder 2.20x0.80x0.60. DUND: Dark grey and black sandy angular fine to coarse ire, metal, plastic and wood GRAVEL. Sand is fine to coa		g, brick, glass,		0.45	137.33			0.50	1 ES		
1	From 0.5	90m with frequent intact and non-intact glass bottles.								1.00	2 ES		1
	At 1.50n	m 1 no. leather shae.				(2.55)							
2	At 2.00n	m 1 no. lightbulb.								2.00	3 ES		2-
3		OUND: Black angular fine to coarse vitreous and dull coa				3.00 (0.30) 3.30	134.78						3-
		OUND: Orangish red slightly clayey sandy angular fine to RAVEL. Sand is fine to coarse.	o coarse sha	le, mudstone		(0.30)				3.40	4 ES		-
-		50m patches of gravelly clay.					124.10						-
		EOH at 3.60m - Limit of machine				3.60	134.18						-
													-
4													4 -
													-
													-
5 -													5 -
													-
													-
													-
													-
													-
													-
6													6 —
Obco	ervations / Re	emarks			Dre	aking Out	/ Hard Strati	a	(tabi	lity & Backfi	 11	Pit Dime	nsions
Obse	vauuns / Ke	ind ha			From (m)		Remarks	u				17.00m	
									Shoring: N				0.60m
									Stability: U	nstable			
									Backfill: Ai	risings		Orientatio 150°	лі:


(¢		CENTRAL ALL EXPLORE > IDENTIFY > DI		Wakefiel Wakefiel Tel +44(0	d 41 Busin d WF2 0XJ))1924 229			Log Tyr Dynar Sampl Sheet 1 o	nic ling	Exp	loratory H WS FIN		er	CENTRAL ALLIA GEO	NCE
Proje	ect No:	2370414				n Details			Depth (m)		thodology	/ & Plant	Plant Used		4	1:50
Nam	ie:	Penny Pie P Footbridge	Park / Pogmoor Recreation Ground	-	432821.12	Northing:		.04	0.00 - 1.20 1.20 - 4.45	Inspec	tion Pit Sampling		Hand Tools Boart Longyea			RH
Loca	tion:	Barnsley		Elevation:	138.15mAOD	Final Dep				-,	p8					RH
				Logged By:	EC	Grid Syste										2/2019
Clien	it:	HBPW		Orientation:	N/A	inclinatio		Depth (m		Casing Ø					Finish Date: 03/1 Samples & Testing	2/2019
			Strata Description				Legend	(Stratum Thickness	Keduced Leve	(mm) Depth (m)	Water Level (m)	Installation / Backfill	Depth (m)	Ref	Test Results	
	rootlets limesto Fror MADE (coarse : At 1 MADE (Gravel i Firm da Subrou	s. Sand is fin- nne and mud m 0.10m with bin 0.30m become GROUND: Lo siltstone, mu 1.20m glass fragr distance fragr GROUND: Fin is angular to ark and light nded fine sil- rey mottled o	ick fragments. <u>es sandy very clayey gravel.</u> jose black very clayey very sand jdstone, clinker, slag and brick ment cobbles. rrm dark brown and black slight subrounded fine to coarse clir brown slightly gravelly slightly	dy subangul GRAVEL. Sa ly gravelly s iker, sandsto silty CLAY. San	ed sandstone, lar to rounded ind is fine to co slightly silty CL/ one, glass and Gravel is suban	/ fine to varse. AY. pottery. gular to		(0.40) (0.40) (2.20) (2.20) (0.20) 2.80 (0.20) 3.00 (0.60) 3.60	137.75 135.55 135.55 135.15 134.55	116 3.00	-		Lepth (m) 0.20 0.30 - 0.40 0.50 0.50 - 0.60 1.00 1.20 - 1.65 1.50 1.90 2.00 - 2.45 2.50 2.60 2.80 3.00 - 3.50 3.60	Ref 1 ES 2 B 3 D 4 ES 5 B 6 ES 7 D 8 ES 9 D 10 D 11 ES 12 D 13 D 14 D 15 B 16 D	Lest Results SPT(S) 1.20m, N=6 (1,1/1,1,1,3) SPT(S) 2.00m, N=8 (2,2/2,2,2,2) SPT(S) 3.00m, N=13 (4,3/3,3,3,4)	2-
-	Very we	eak brownisł	h orange laminated SILTSTONE				*****	3.00	134.33				3.70	17 D 18 D]
							× × × × × × × × ×						4.00 - 4.45		CDT/S) 4.00m N=46 (4.4/5 8.12.2	-
4 -							× × × × × × × × × × × × × ×	(0.85)					4.00 - 4.45	19 D	SPT(S) 4.00m, N=46 (4,4/5,8,12,2	21) 4 -
							× × × × × × × × × × × ×									-
1 -			EOH at 4.45m - Schedu	led Depth			*****	4.45	133.70							-
-																-
																1
5 -																5 -
																-
																_
																1
																-
6 -																6 -
-																-
-																-
-																-
-																-
7 -																7 -
																-
1																-
																-
																-
8 -																8 -
																-
																-
																-
																-
9																9 -
1																-
																-
																-
-																
10	· · · · ·															10 -
Obse	ervations ,	/ Remarks		Mi					nic Sampling						tallations	
				pa	Depth (m) 0.00 - 4.45	Material Bentonite	1.20	2.00	am (mm) Recove	0	temarks	Inst	trument Deta	ils	Resp. Zone Depth (m)	Diam
				counte	/s Inst			3.00 4.00	101 10 86 10							
				iter En 10 User	g Point								(Ground	water Strikes	
				oundwate. Casina	ritorin							Strike (m) Ca			ses To (m) Time (min) Rem	arks
				No Gro	Hammer Ref & E		1									
					O5BL00	J (04%)										


		ELIVER	Tel +44(0) Web: ww	w.central-	889 alliance.co	o.uk	Dynar Sampl	l ing of 1		FIN			CENTRAL ALL GEO Scale:	IANCE
	+14 y Pie Park / Pogmoor Recreation Ground	Easting:	432844.61	n Details Northing	406469		Depth (m)	Met	thodology hod		Plant Used		Checked By:	RH
FOOTD	-	Elevation:	137.78mAOD	Final Dep	th: 3.45m		0.00 - 1.20 1.20 - 3.45		tion Pit Sampling		Hand Tools Boart Longyear		Approved By:	RH
Location: Barns	sley	Logged By:	EC	Grid Syste	em: OSGB								Start Date: 03	3/12/2019
Client: HBPW	V	Orientation:	N/A	Inclinatio	n: 90°						1		Finish Date: 03	3/12/2019
	Strata Description				Legend	Depth (m (Stratum	(mAOD)	(mm)	Water Level (m)	Installation / Backfill			Samples & Testing	
coarse sandsto	ID: Dark brown sandy very clayey su one, siltstone and brick GRAVEL. San cket of brownish black slightly gravelly slightly so ID: Dark brown gravelly very clayey f	nd is fine to andy CLAY.	coarse.			(1.00)	136.78	Depth (m)			Depth (m) 0.20 0.20 - 0.50 0.50 0.60 0.90	Ref 1 ES 2 B 3 ES 4 D 5 ES	Test Results	1-
angular to sub clinker and pla MADE GROUN	pangular fine to coarse siltstone, pot	tery, glass, l gular to sul	brick, sandstone bangular fine to	e, coarse		(0.20) 1.20 (0.80)	136.58				1.20 1.20 - 1.65	6 D 7 D	SPT(S) 1.20m, N=7 (1,1/1,2,2	,2)
2 Extremely west	ak black laminated frichle CANDETC	NE				2.00	135.78				1.90 2.00	8 D 9 ES	SPT(S) 2.00m, N=1 (1,0/1,0,0),0) <u>2</u> -
<pre>Lxtremely wea</pre>	ak black laminated friable SANDSTO	NE.				(0.45)					2.00 - 2.45	10 D		-
					* * * * * * * *	2.45	135.33							
No Recovery.														
3 - -						(1.00)		116 3.00			3.00 - 3.45	11 D	SPT(S) 3.00m, N=2 (1,0/1,0,1	I,0) 3 -
-	EOH at 3.45m - Schedul	led Depth				3.45	134.33							
-														
4														4 -
4														4 -
-														
-														-
-														
5 -														5 -
-														
-														
]														-
6 -														6 -
-														
-														
-														
														7 -
′ -														7
4														
-														
-														
8														8 -
-														
4														
-														
														0 -
9-														9 -
-														
-														
10											-			10 -
Observations / Remark	ks	М	isc. Back	fill		Dynar	nic Sampling	Runs			I	l Inst	allations	
,		0	Depth (m)	Material Bentonite	From (m) 1 1.20	To (m) Di	am (mm) Recove	ery (%) R	emarks	Inst	rument Detai		Resp. Zone Depth (n	m) Diam
		ountere	0.00 - 3.45	pentonite	2.00	2.00 3.00	101 10 101 0							
		ter Enci	I Point/						ŀ		(Ground	water Strikes	
		nundwat Caciou	utoring						S	Strike (m) Ca				Remarks
		No Gro	Hammer Ref & Er		1									
L			O5BL005	0 (04%)										

Projec		2370414	CENTRAL ALL explore > identify > di		Wakefiel Wakefiel Tel +44(C Web: wv	House, Sou d 41 Busin d WF2 OXJ))1924 229 vw.central- on Details	ess Park 1889		Log Ty Dyna Samp Sheet 1	mic ling of 1		ploratory Hole Number WS05 FINAL gy & Plant			CENTRAL ALLIANCE GEO Scale: 1:50		
Name			Park / Pogmoor Recreation Ground	Easting:	432822.42	Northing:	406417	7.80	Depth (m)	Me	thod	y & Plaint	Plant Used		Checked By:		:50 RH
Name	•	Footbridge		Elevation:	138.21mAOD	Final Dep	th: 7.45m		0.00 - 1.20 1.20 - 7.45		tion Pit Sampling		Hand Tools Boart Longyea	r	Approved By:	R	RH
Locati	on:	Barnsley		Logged By:	EC	Grid Syste	em: OSGB								Start Date:	05/12	2/2019
Client:	:	HBPW		Orientation:	N/A	Inclinatio	n: 90°				1		1		Finish Date:	05/12	2/2019
			Strata Description				Legend	Depth ((Stratu Thickne	m (mAOD)	el Casing Ø (mm) Depth (m)	Water Level (m)	Installation / Backfill	Depth (m)	Ref	Samples & Testing Test Res		
- 1	MADE G	ROUND: Da	ark brown slightly gravelly sligh	tly clayey fi	ine to coarse S	AND.				Depth (m)			Depth (III)	nei	Test nes		
			ne to coarse brick, metal, glass pose dark brownish grey mottle			condu		(0.30 0.30					0.20	1 ES			
1	angular	to subangu	lar fine to coarse glass, pottery										0.50 0.50 - 0.70	3 ES 2 B			-
	sandsto	ne GRAVEL.	Sand is fine.														
1 -	At 0.5	90m becomes v	very gravelly with more glass.										1.00	4 ES			1 -
	From	n 1.20m with clo	oth and large glass fragments.										1.20 - 1.65	5 D	SPT(S) 1.20m, N=5 (2	,2/1,1,1,2)	
								(2.20					1.50	6 ES			
-													1.80	7 D			
2 -	Belov	w 2.00m, very la	oose.										2.00 - 2.45	8 D	SPT(S) 2.00m, N=0 (0	,0/0,0,0,0)	2 -
	20.01	,,												1			
			abt brown and an electronic		000000000000000000000000000000000000000	2001-		2.50	135.71				2.50	9 ES			
1	to subro	ounded fine	ght brown and reddish orange to coarse glass, plastic, metal,					(0.50					2.80	10 D			
3 - (e to coarse. es very clayey and mottled white			,		3.00	135.21				3.00 - 3.45	10 D	SPT(S) 3.00m, N=5 (1	,1/1,2,1,1)	3 -
Ĩ	MADE G	ROUND: Lo	oose dark brown mottled black														
	subangu	liar fine to c	coarse glass, clinker and slag Gl	AVEL. Sand	d is fine to coal	rse.							3.50	12 ES			-
													5.50	12 13			
								(5.5.5)		116							
4 -								(2.00		4.00			4.00 - 4.45	13 D	SPT(S) 4.00m, N=5 (2	,1/1,1,1,2)	4 -
	From	1 4.20m with br	ick fragments.														
-	From	n 4.60m become	as yanu dayay										4.50	14 ES			-
	110111	4.00111 DECONIE	es very cluyey.										4.80	15 D			
5 - 1			casional siltstone gravel. Dose light brownish grey mottle	d black clay	vey very sandy	angular		5.00	133.21				5.00 - 5.45	16 D	SPT(S) 5.00m, N=9 (1	,2/2,2,2,3)	5 -
	to subar	ngular fine t	to coarse glass, metal, clinker, p														
	fine to c	oarse.											5.50	17 ES			-
-													5.80	18 D			
6 -	Relo	w 6.00m, mediu	um dense										6.00 - 6.45	19 D	SPT(S) 6.00m, N=12 (2,2/3,2,3,4)	6 -
	Delo	w o.oom, mean	in dense.					(2.45	,								
													6.50	20 D			
-																	
7 -													7.00 - 7.45	21 D	SPT(S) 7.00m, N=12 (2 2 /2 2 2 41	7 -
													7.00 - 7.43	210	3F1(3) 7.0011, N=12 (2,2/3,2,3,4)	/ -
								7.45	130.76								
			EOH at 7.45m - Schedu	ed Depth										1			
8 -																	8 -
														1			
														1			-
														1			
9 -														1			9 -
														1			
														1			
														1			
10 -													-				10 -
Ohser	vations /	Remarks		М	isc. Bac	kfill		Dvn	mic Sampling	Runs				Inc	tallations		
					Depth (m)	Material	From (m)	· · ·	Diam (mm) Recov	ery (%) F	temarks 32 Blows	Inst	trument Deta			epth (m)	Diam
				ountere	's Instal		2.00 3.00	3.00 4.00	101 4 101 4	30 : 10 4	28 Blows 40 Blows						
				ater Enco			4.00 5.00	5.00 6.00	86 9 86 1	90 2 00 4	26 Blows 43 Blows			Ground	lwater Strikes		
				oundwate Casha	nitoring		6.00	7.00	76 1	30 :	32 Blows	Strike (m) Ca			ses To (m) Time (min)	Rema	arks
				No Gn	Hammer Ref & I O5BL00												
L					555200												

			Alliance	House, Sou	th Park W	av	Log Ty	/pe	Exp	loratory H	lole Numbe	er		
	CENTRAL ALL		Wakefiel	d 41 Busine		-,	Dyna	mic		WS	06			
	EXPLORE > IDENTIFY > D		vvakener	d WF2 0XJ))1924 2298	389		Samp	ling		FIN			CENTRAL	
			Web: wv	vw.central-a	alliance.co	o.uk	Sheet 1	of 1		1 IIN			CENTRAL	ALLIANCE EO
Pro	ect No: 2370414		Locatio	on Details				Me	thodolog	y & Plant			Scale:	1:50
Nar	Penny Pie Park / Pogmoor Recreation Groun Footbridge	d Easting:	432846.00	Northing:	406425	5.00	Depth (m) 0.00 - 0.60		thod tion Pit		Plant Used Hand Tools		Checked By:	RH
Loc	ition: Barnsley	Elevation:	137.95mAOD	Final Dept									Approved By:	RH
Clie		Logged By: Orientation:	EC N/A	Grid Syste Inclination									Start Date: Finish Date:	05/12/2019 05/12/2019
Circ		1	175	meimatio		Depth (m) Reduced Leve	Casing Ø	14/-1	Installation /			Samples & Testing	05/12/2015
	Strata Description	n			Legend	(Stratum Thickness	Reduced Leve	el (mm) Depth (m)	Water Level (m)	Backfill	Depth (m)	Ref	Test Resu	ults
-	MADE GROUND: Dark brown and brown slightly			to		(0.30)								
-	coarse SAND. Gravel is angular fine to coarse glas MADE GROUND: Dark brown mottled black slight	tly clayey gra	avelly fine to co			0.30 (0.30)	137.65							-
	SAND. Gravel is angular fine to coarse glass, brick \and plastic.	k, pottery, wi	ire, clinker, rop	e, rubber		0.60	137.35							-
-	EOH at 0.60m - R	efusal		/										-
1 -														1 -
-														-
-														-
-														
2 -														2 -
-														
-														-
-														
3 -														3 -
-														
-														-
-														
4 -														4 -
4														4
-														
-														-
-														-
5 -														5 -
-														-
-														-
-														
6 -														6 -
														-
-														-
-														
- 7 -														7 -
														-
-														
8 -														8 -
-														•
-														-
														-
-														
9 -														- 9
														-
-														
														-
10 -														10 -
Obs	ervations / Remarks	М	lisc. Bac				nic Sampling		•		· I		itallations	
		red	Depth (m) 0.00 - 0.60	Material Arisings	From (m)	To (m) Di	am (mm) Recove	ery (%) R	emarks	Inst	rument Detail	s	Resp. Zone De	epth (m) Diam
		ncounte	ased nt/s inst											
		ater	e Not Cas ing Point/										dwater Strikes	
		iroundy	Vouitoring Hammer Ref & I	Energy Potio (6/)						Strike (m) Ca	ising (m) Sealed	d (m) Ri	ises To (m) Time (min)	Remarks
L		No	Hammer Ref & I	Linergy Katio (%)										

CENTRAL ALLI EXPLORE > IDENTIFY > DE Project No: 2370414			Wakenelu WF2 UXJ					Log Type Dynamic Sampling Sheet 1 of 1		Exploratory Hole Number WS06A FINAL			er	CENTRAL ALLIANO GEO		
Nam Locat	e: tion:	Penny Pie F Footbridge Barnsley	Park / Pogmoor Recreation Ground	Elevation: Logged By:	432847.00 137.95mAOD EC	Northing: Final Dep Grid Syste	m: OSGB		Depth (m) 0.00 - 1.20 1.20 - 5.45	Met	thod tion Pit Sampling		Plant Used Hand Tools Boart Longyear	r	Checked By: Approved By: Start Date: 05/	RH RH /12/2019
Clien		HBPW	Strata Description	Orientation:	N/A	Inclination	n: 90° Legend	Depth (i (Stratui Thickne	n (mAOD)	el Casing Ø (mm) Depth (m)	Water Level (m)	Installation / Backfill	/ Donth (m)	Ref	Finish Date: 05, Samples & Testing Test Results	/12/2019
	coarse S From MADE G very grav	AND. Grave <u>0.10m with ro</u> ROUND: Ve velly fine to	ark brown and brown slightly g el is angular fine to coarse met outets. ery loose dark brown and black o coarse SAND. Gravel is suban plastic, pottery and metal.	nl, clinker, gl mottled lig	ass and brick. ht brown very	v clayey		(0.30) 0.30	-	Deptr(iii)			0.20 0.30 - 0.50 0.50	1 ES 2 B 3 ES	IES RESULS	
	At 0.6 From	60m with frequ 10.70m become	ent plastic bags es very gravelly. es slightly gravelly with occasional glass j	ragments.				(1.40)	136.25				1.00 1.20 - 1.65 1.50	4 ES 5 D 6 ES	SPT(S) 1.20m, N=1 (1,0/0,0,0,1	1 -) -
2	MADE G medium From From	ROUND: Ve to coarse g 2.30m become 2.40m become	ery loose black and dark brown glass, clinker and slag GRAVEL. es very gravelly. es very clayey	clayey very		r		(1.50)					1.80 2.40 2.50	7 D 8 ES 9 D	SPT(S) 2.00m, N=0 (0,0/0,0,0) 2 -
- - - 3 - - - -	MADE G	ROUND: Ve	m with shale and coal gravel. ery loose black and dark grey n e SAND. Gravel is subangular fi					3.20	134.75				3.00 - 3.45	10 D	SPT(S) 3.00m, N=3 (1,1/1,1,1,0) 3-
4	clinker a MADE G Gravel is fine to c	ind slag. ROUND: So angular to oarse.	oft light brown mottled dark br subangular fine to coarse silts	own slightly tone, shale	gravelly sand and sandstone	y CLAY. e. Sand is		(0.60) 3.80 (0.10) 3.90 (0.70)	134.15 134.05	<u>116</u> 4.00			3.50 3.80 3.90 4.00 - 4.45	11 ES 12 D 13 D 14 D	SPT(S) 4.00m, N=7 (1,1/2,2,1,2) 4 -
	sandstor	ne and silts	tone GRAVEL. Sand is fine to co inly laminated SANDSTONE.					4.60	133.35				4.40 4.80 5.00 - 5.45	15 D 16 D 17 D	SPT(S) 5.00m, N=10 (1,2/2,3,3,	
- - - - - - - - - - - - - -			EOH at 5.45m - Schedu	ed Depth				5.45	132.50							6 -
7																- 7 -
																-
8																8 -
9																9-
10													_			10 -
Obse	ervations /	Remarks		dwater Encountered	Depth (m) 0.00 - 5.45	Material Bentonite	From (m) 1.20 2.00 3.00 4.00		101 8 101 8	ery (%) R 75 3 80 4 80 4	emarks 14 Blows 13 Blows 34 Blo 11 Blows			ils Ground	Allations Resp. Zone Depth (m) Water Strikes Depth (m)	
				No Ground Co	Hammer Ref &	Energy Ratio (%) 05 (64%)						strike (m) C	asing (m) Seal	ed (m) Ri:	ses To (m) Time (min) Re	marks

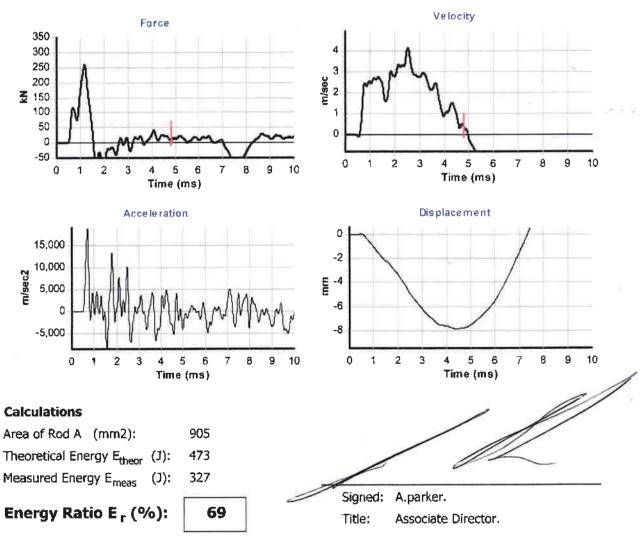
Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Dynamic sampling uk Itd 5-8 victory parkway victory road Derby DE24 8ZF

Instrumented Rod Data

Diameter d _r (mm):	54
Wall Thickness t _r (mm):	6.0
Assumed Modulus E_{a} (GPa):	208
Accelerometer No.1:	9603
Accelerometer No.2:	6457


Hammer Ref:	06
Test Date:	04/06/2019
Report Date:	06/06/2019
File Name:	06.spt
Test Operator:	ТР

Hammer Information

Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
String Length L	. (m):	15.0

Comments / Location

Central alliance hammer tested at Dynamic samplings yard.

The recommended calibration interval is 12 months

SPTMAN ver.Hammer Energy ver. 1.93 All rights reserved, Testconsult ©2010

Χ.

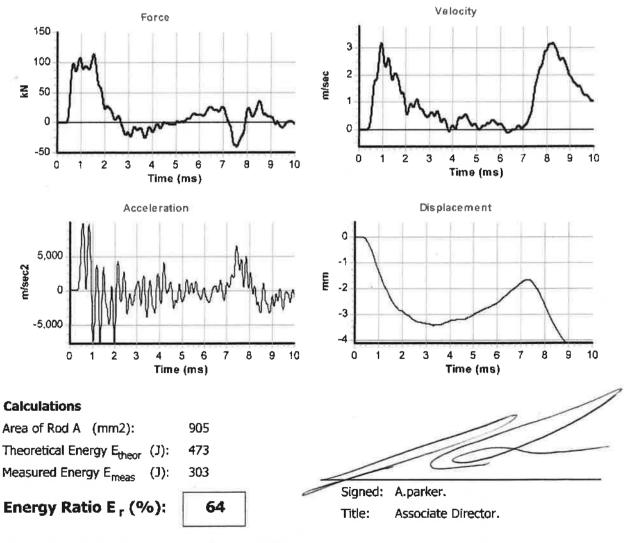
Dynamic sampling uk ltd 5-8 victory parkway victory road Derby DE24 82F

Instrumented Rod Data

Diameter d _r (mm):	54
Wall Thickness tr (mm):	6.0
Assumed Modulus E_a (GPa):	208
Accelerometer No.1:	9603
Accelerometer No.2:	6457

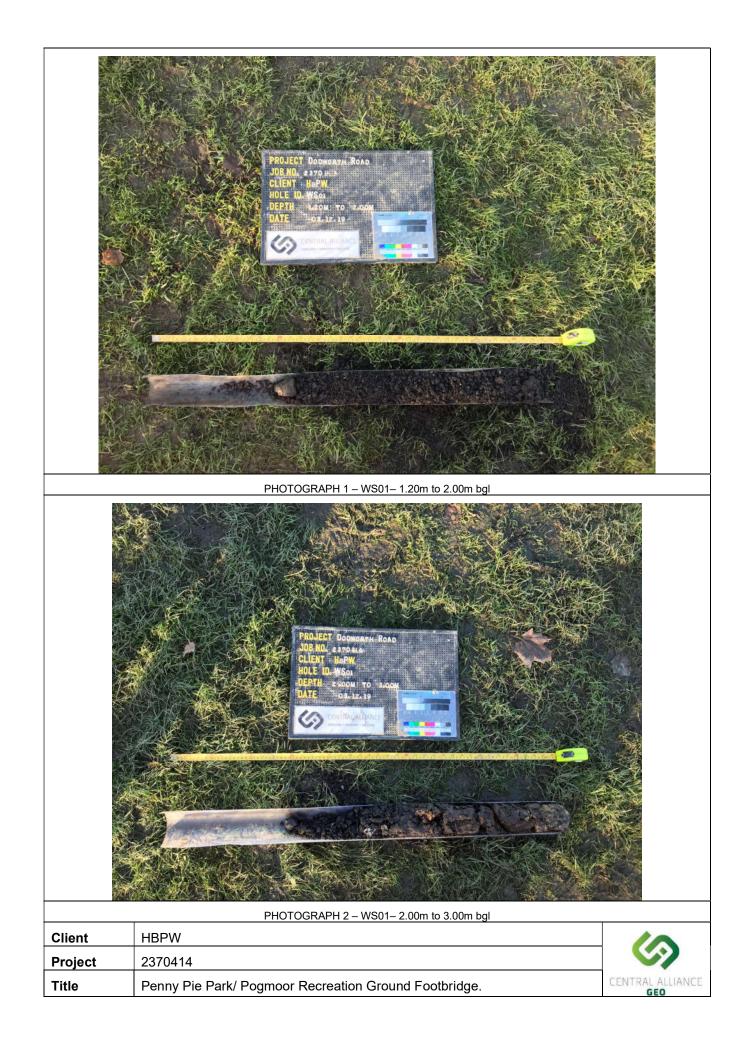
Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005


Hammer Ref:	O5BL005
Test Date:	17/06/2019
Report Date:	18/06/2019
File Name:	O5BL005.spt
Test Operator:	ТР
File Name:	O5BL005.spt

Hammer Information

Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
String Length L	. (m) :	15.0

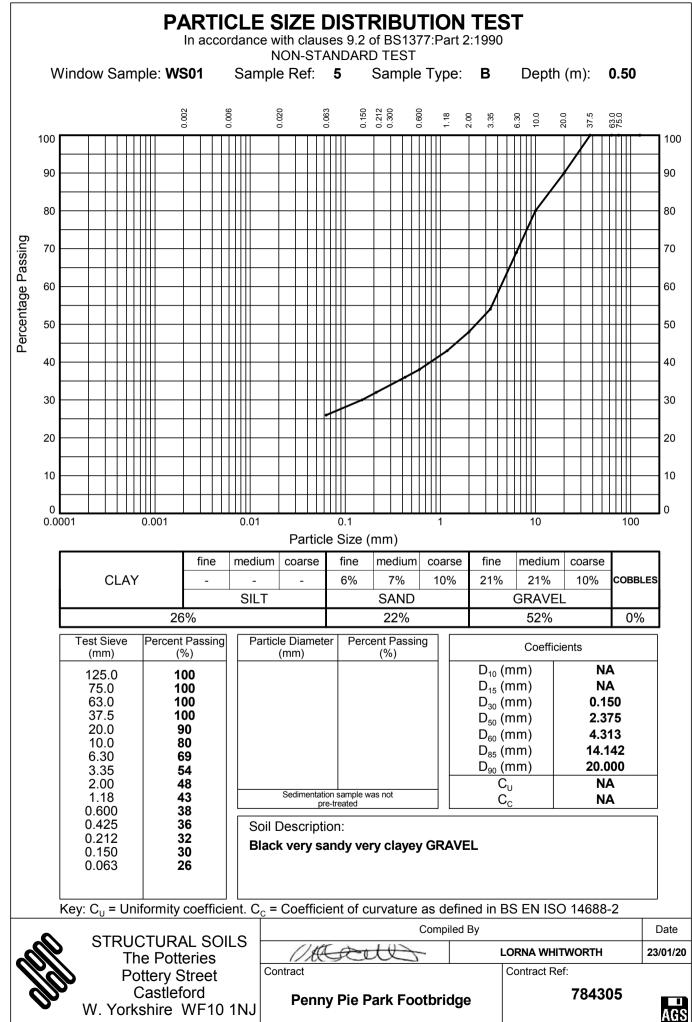

Comments / Location

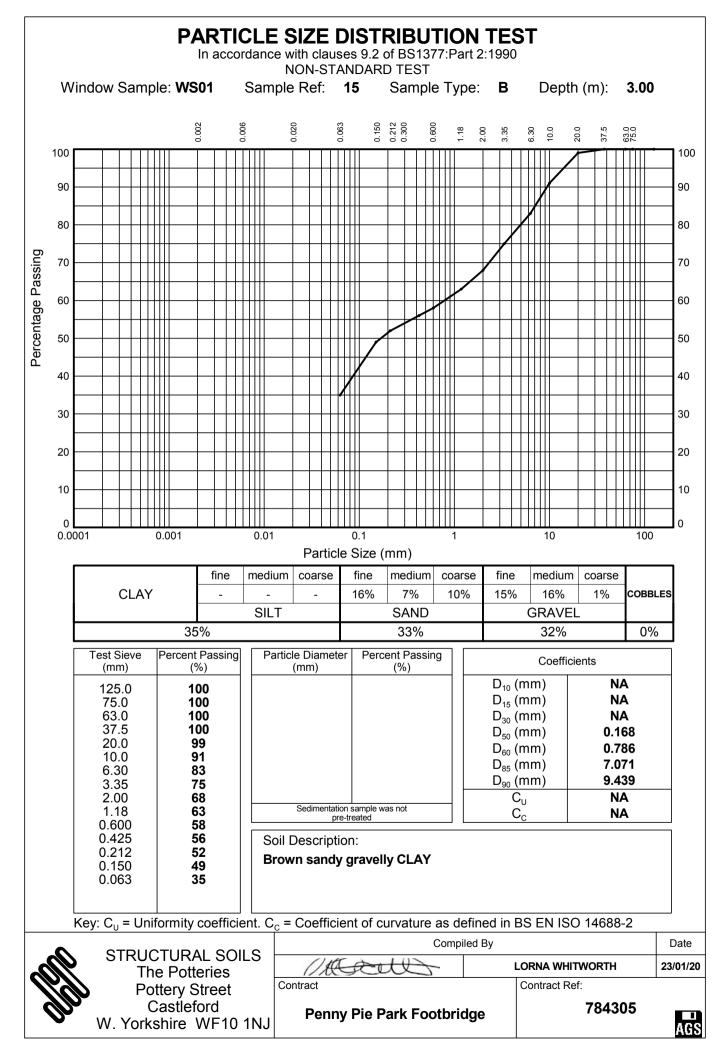
Central alliance rig tested at Dynamic samlings yard.

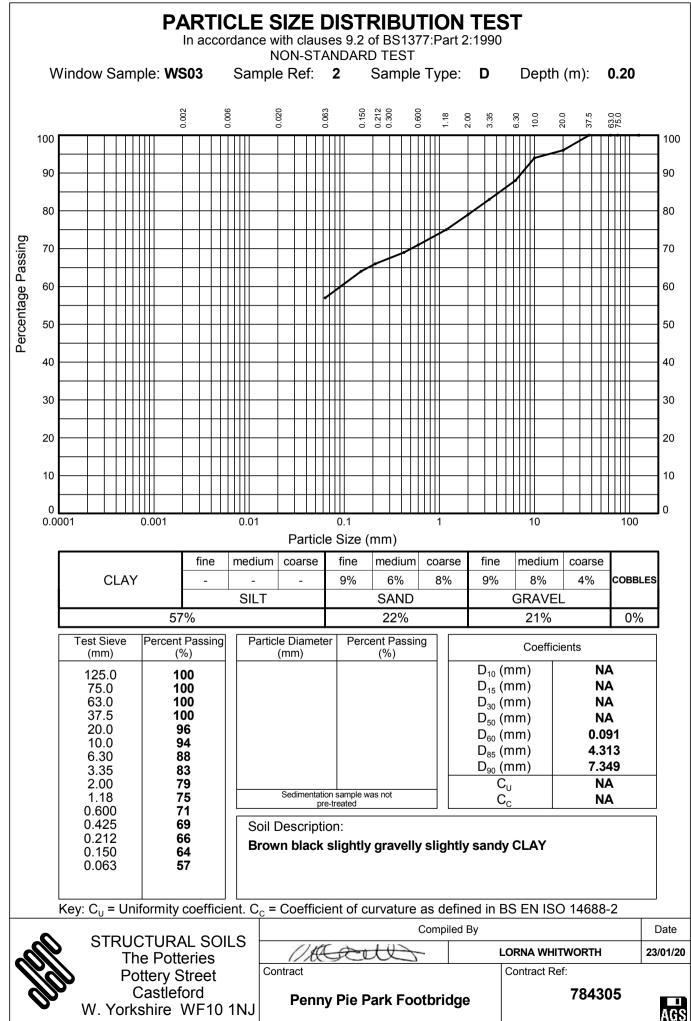
The recommended calibration interval is 12 months

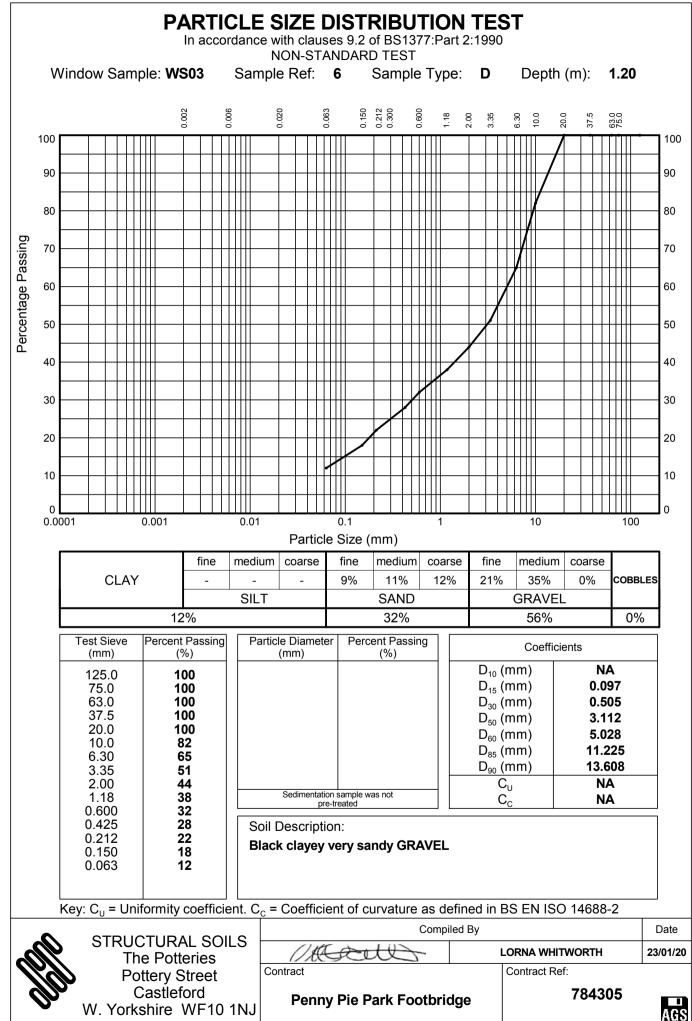
APPENDIX B PHOTOGRAPHS

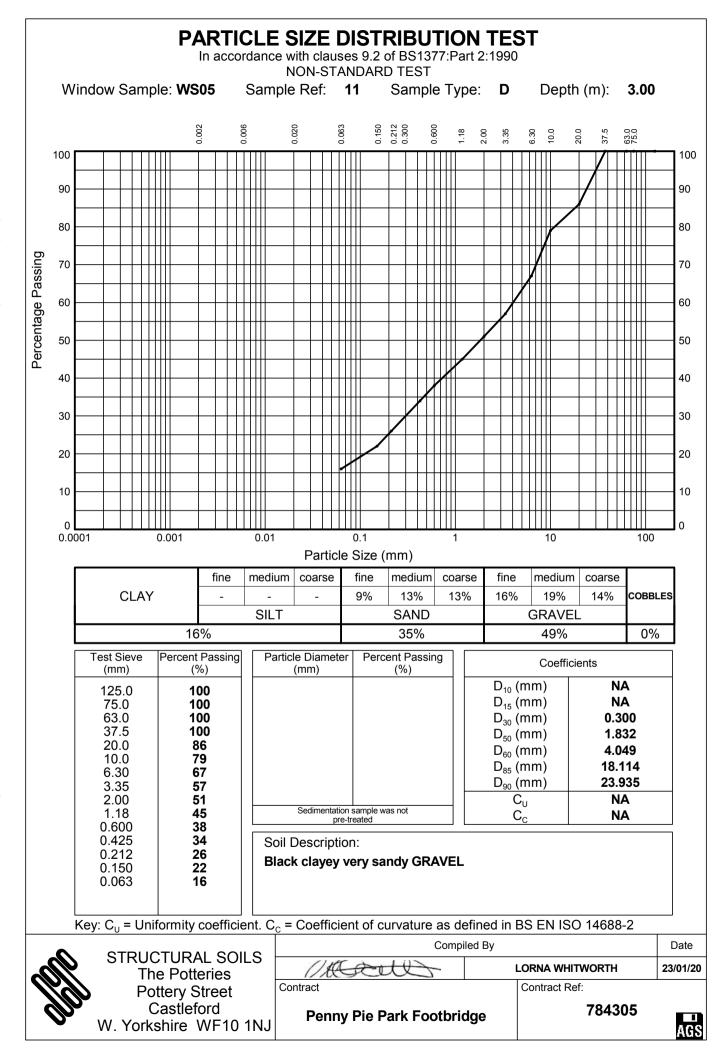


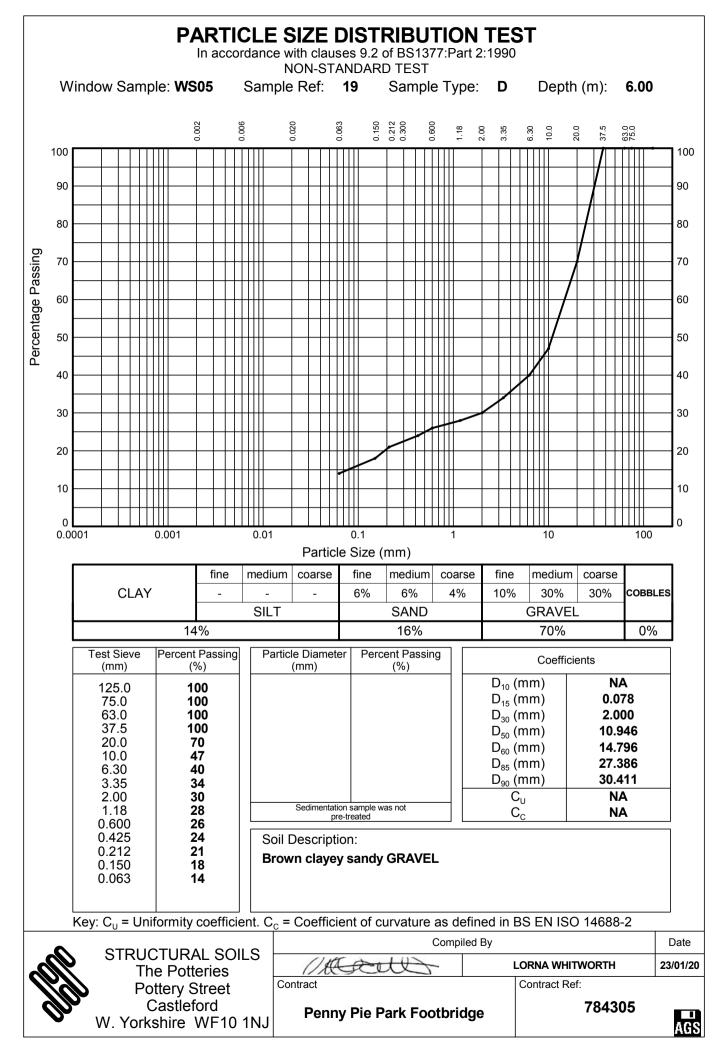


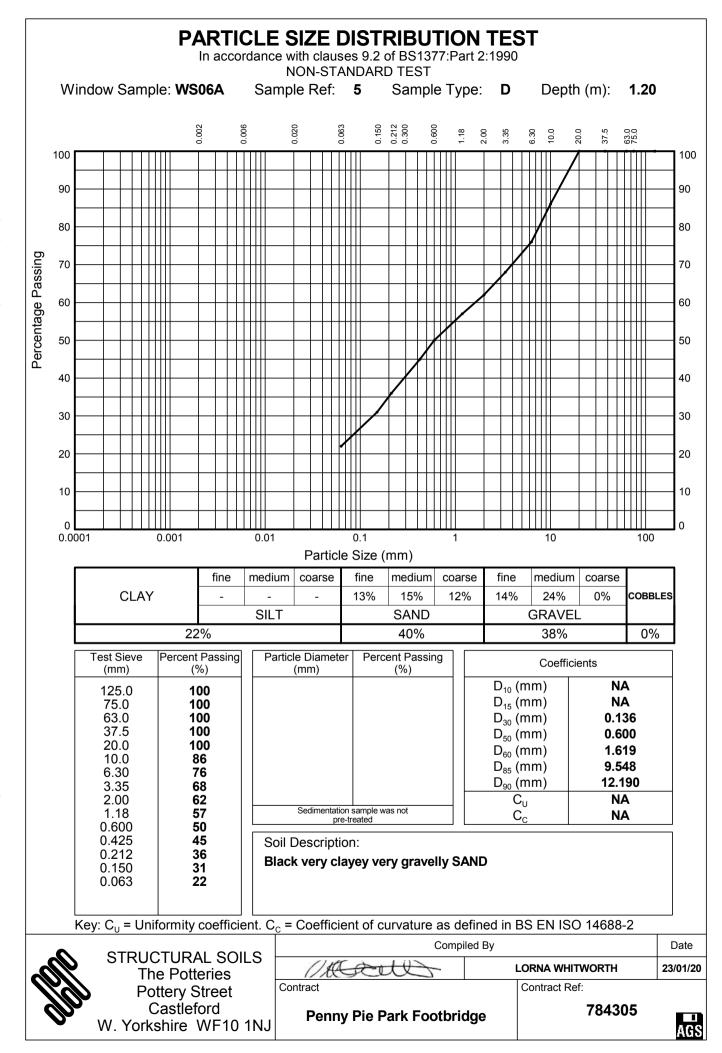


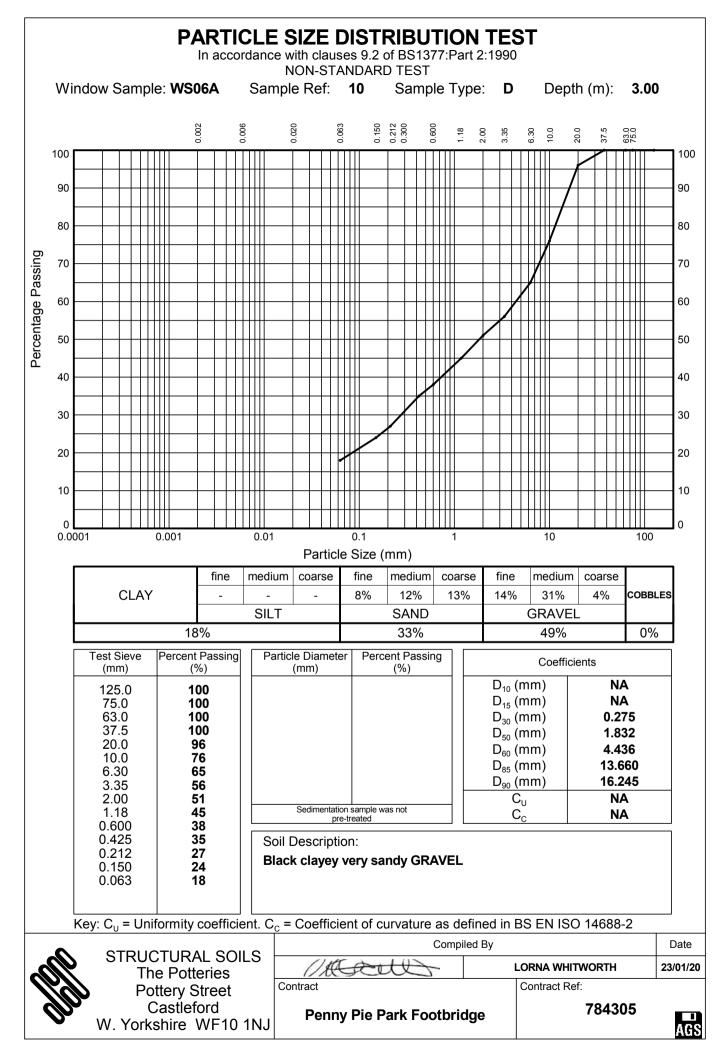


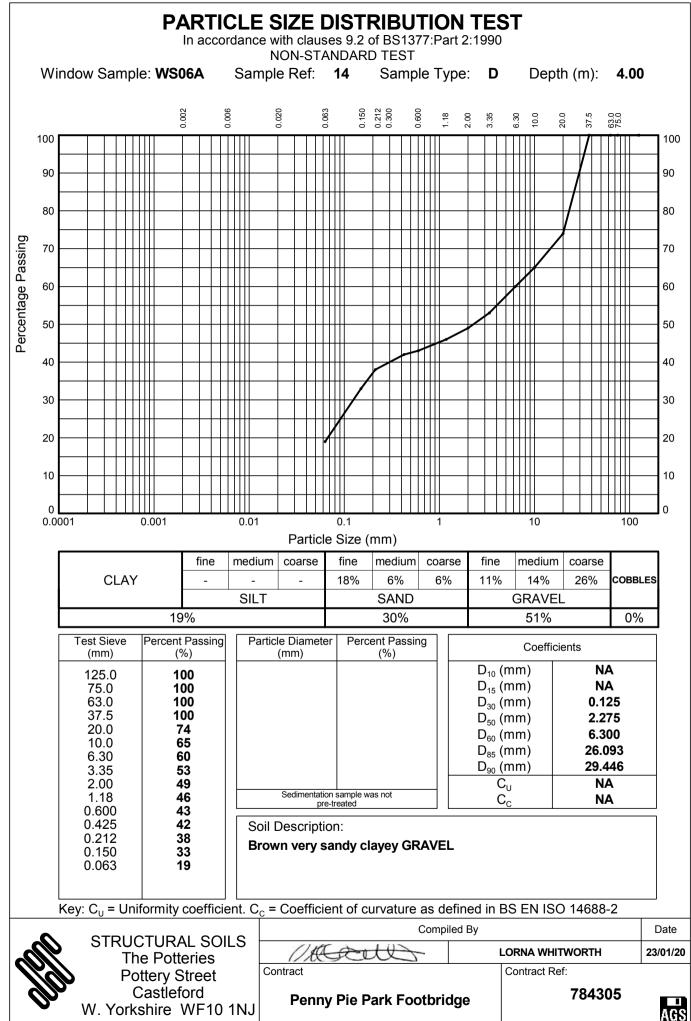

APPENDIX C GEOTECHNICAL LABORATORY TESTING

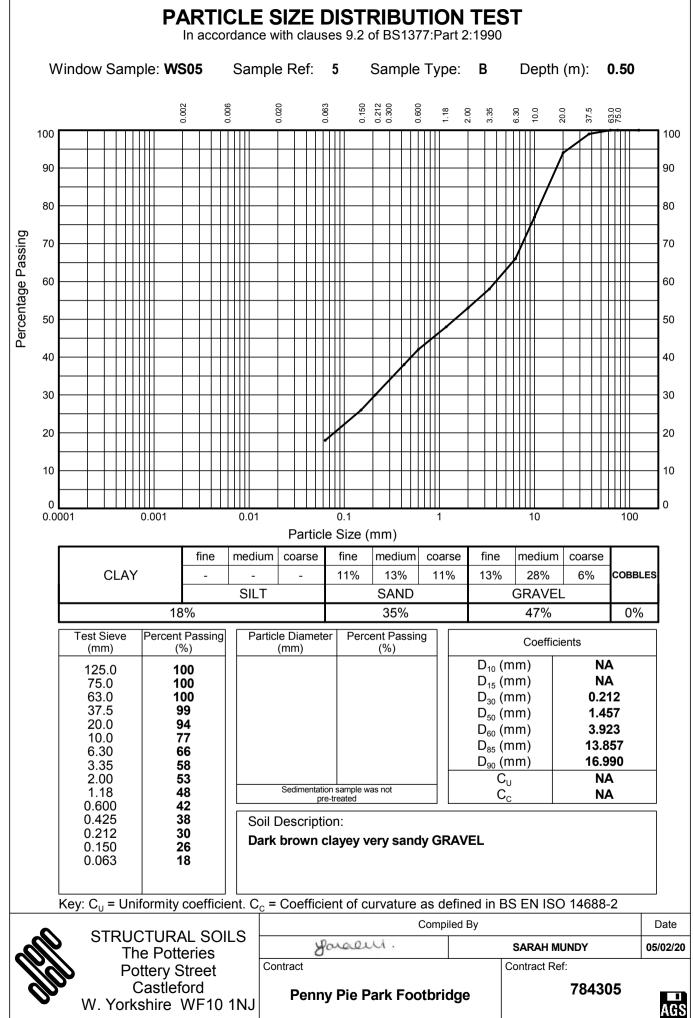

STRUCTURAL SOILS LTD TEST REPORT Report No. 784305 - R2								
Date	23-January-2020	Contract Penny Pie F	Park Footbridge					
Client Address	Central Alliance Alliance House South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ		arkrootbridge					
For the Atter	ntion of *		T					
Order receive Testing Starte Testing Comp	ed	08-January-2020 10-January-2020 23-January-2020	Client Reference Client Order No. Instruction Type	784305 * Written				
Tests marked	l 'Not UKAS Accredited' in this	s report are not included in	the UKAS Accreditatio	on Schedule for our Laboratory				
UKAS Accred	Particle Size Distribution wet							
* This clause	of BS1377 is no longer the mo	ost up to date method due	to the publication of I	SO17892				
Test were und	emaining samples will be retaine ertaken on samples 'as received' nterpretations expressed in this i	unless otherwise stated.						
Struc	ctural Soils Ltd, The Potteries, Po	ttery Street, Castleford, WF10	1NJ Tel.01977 552255. E	E-mail mark.athorne@soils.co.uk				











TESTING VERIFICATION CERTIFICATE

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **05/02/2020 16:05:38**.

Testing reported after this date is not covered by this Verification Certificate.

D-Smith

Approved Signatory Daniel Smith (Contract Manager)

(Head Office) Bristol Laboratory Unit 1A, Princess Street Bedminster Bristol BS3 4AG

Castleford Laboratory The Potteries, Pottery Street Castleford West Yorkshire WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory Anerley Court, Half Moon Lane Hildenborough Tonbridge TN11 9HU

and a		Contract:	Job No:
<i>Wall</i>	STRUCTURAL SOILS LTD	Penny Pie Park Footbridge	784305
00			AGS

alla	<i>b</i>	STRUCTURAL S TEST REPC		
Report No.	784312 R1			
Date	29-January-2020	Contract Penny Pie I	Park Footbridge	
Client Address	Central Alliance Alliance House South Park Way Wakefield 41 Business Park Wakefield WF2 0XJ			
For the Atter	ntion of Richard Ha	rdwick	1	
Order receive Testing Starte Testing Comp	ed	14-January-2020 23-January-2020 29-January-2020	Client Reference Client Order No. Instruction Type	784312 Written
Tests marked		specimen ISRM SM 1974-2		on Schedule for our Laboratory
* This clause	of BS1377 is no longer the m	ost up to date method due	to the publication of I	SO17892
Test were und	emaining samples will be retaine ertaken on samples 'as received' nterpretations expressed in this	unless otherwise stated.		
Strue	ctural Soils Ltd, The Potteries, Po	ttery Street, Castleford, WF10	1NJ Tel.01977 552255. E	-mail mark.athorne@soils.co.uk

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH01	2	5.10	A+P	89	64	0.910	85	0.13	1.27	0.16 (🗸)	9.3		в
BH01	2	5.10	I+L	42	34	0.070	43	0.04	0.93	0.04	9.3		в
													+
													+
													+
													+
													+
I _s (50) Mean Axial te Unable to calculate <u>Note:</u> Size Correctio	ests = 0.16 MN/ $\ge I_a(50)$ Strength on Factor (F) ca	/m ² I Anisotropy Inde Alculated using F	$\frac{\text{Results}}{\text{ex from this}}$ = $(D_e/50)^\circ$		quivalent core dia	ameter).	denotes Non- Point Load In	-standard Test. $\underline{\text{dex column:}}$ (\checkmark) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \operatorname{exclu}$	L = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]
ST	RUCTUR/	AL SOILS				Compiled By	/			Date	Cor	ntract Ref:	
	1a Princes	s Street	Fi	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20)		
Bedminster Bristol BS3 4AG							784312	AG					

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH01	3	5.45	A+P	89	55	0.710	79	0.11	1.23	0.14 (🗸)	7.9		в
BH01	3	5.45	I+L	65	50	0.280	64	0.07	1.12	0.08	7.9		в
						-							
													+
				-		-							+
													+
													+
				+									++
				+									+
I _s (50) Mean Axial te Unable to calculate <u>Note:</u> Size Correctic	Mean Axial tests = 0.14 MN/m ² e to calculate I _a (50) Strength Anisotropy Ir ize Correction Factor (F) calculated using			s dataset. ^{.45} (where D _e is ea	quivalent core dia	ameter).	denotes Non- Point Load In	-standard Test. $\underline{\text{Modex column:}}$ (\checkmark) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \operatorname{exclu}$	L = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	
► ST	RUCTUR					Compiled By	y			Date	Cor	ntract Ref:	
	1a Princes	s Street	Fi	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20)		
Bedminster Bristol BS3 4AG								784312	AG				

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH01	4	5.70	D+L	45	86	0.080	86	0.01	1.28	0.01 (🗸)	8.2		в
BH01	4	5.70	A+P	86	53	0.375	76	0.06	1.21	0.08 (🗸)	8.2		в
													+
													+
													+
													+
													+
													+
													+
													+
													+
													+
			Desults							Kasa			
$I_{s}(50)$ Mean Diame $I_{s}(50)$ Strength Ani	50) Mean Axial tests = 0.08 MN/m ² 50) Mean Diametral tests = 0.01 MN/m ² 50) Strength Anisotropy Index = 5.66 (calculated from highest and lowest diametral and axial $I_s(50)$ ratio) <u>ote:</u> Size Correction Factor (F) calculated using F = $(D_e/50)^{0.45}$ (where D_e is equivalent core diameter).						denotes Non- Point Load In	standard Test. <u>dex column:</u> (\checkmark) B = Bristol (BS3)	= included in m	ean calculations,	$(\boldsymbol{\chi}) = \text{exclude}$	_ = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]
ST	RUCTUR	AL SOILS				Compiled By	1			Date	Con	tract Ref:	
	STRUCTURAL SOILS 1a Princess Street		Fr	fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20)		
Plan	Bedmin Briste BS3 4	ol	Contract			Penny Pi	e Park Foot	bridge				784312	AGS

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH01	5	6.30	D+L	48	90	0.075	90	0.01	1.30	0.01 (🗸)	7.3		в
BH01	5	6.30	A+P	90	37	0.465	65	0.11	1.13	0.12 (🗸)	7.3		в
I (50) Mean Diam	tests = 0.12 MN/ netral tests = 0.01 nisotropy Index = tion Factor (F) ca	I MN/m ²	$\frac{\text{Results}}{\text{ed from high}}$ $= (D_e/50)^{0}$	nest and lowest d	liametral and axia	al I _s (50) ratio) ameter).	denotes Non- Point Load In	standard Test. <u>dex column:</u> (\checkmark) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \text{exclude}$	= Parallel, P = Perpendicular, ed from mean calculations l Hempstead (HP3 9RT), T =	[NS]
	TRUCTUR					Compiled By	1			Date	Cont	ract Ref:	
ĭ Im	1a Princes	s Street	Fr	fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20)		
flen	Bedmin Bristo BS3 4/	ol	Contract:			•	e Park Foot	bridge		1		784312	AGS

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)		Lab location
BH01	6	6.80	A+P	86	47	0.450	72	0.09	1.18	0.10 (🗸)	8.6		в
BH01	6	6.80	I+L	60	48	0.040	61	0.01	1.09	0.01	8.6		в
													+
				+									
				+									
				+									
				+						-			
				+									
	_			+						-			
	_			+						_			
					<u> </u>								
			Results										
Unable to calculate	Mean Axial tests = 0.1 MN/m ² to calculate I _a (50) Strength Anisotropy In ize Correction Factor (F) calculated using			s dataset.	quivalent core dia	ameter).	denotes Non- Point Load In	-standard Test. $\underline{\text{dex column:}}$ (\checkmark) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \operatorname{exclu}$	L = Parallel, P = Perpendicular, uded from mean calculations nel Hempstead (HP3 9RT), T =	[NS]
- ST	RUCTUR/	AI SOILS				Compiled By	4			Date	Со	ontract Ref:	
	1a Princes	s Street	Fi	rancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20	D		
flen	Bedmin Briste BS3 4	ol	Contract	:		Penny Pi	e Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH01	7	7.40	D+L	44	88	0.040	88	0.01	1.29	0.01 (🗸)	14		в
BH01	7	7.40	A+P	88	38	0.055	65	0.01	1.13	0.01 (🗸)	14		в
													+
													+
													+
													+-
													+
													+-
													+-
													+-
													+-
													+
			Deculto							Kov			
I _s (50) Mean Diame	50) Mean Axial tests = 0.01 MN/m ² 50) Mean Diametral tests = 0.01 MN/m ² 50) Strength Anisotropy Index = 2.19 (calculated from highest and lowest diametral and axial $I_s(50)$ ratio) te:Size Correction Factor (F) calculated using F = $(D_e/50)^{0.45}$ (where D_e is equivalent core diameter).						denotes Non- Point Load In	standard Test. <u>dex column:</u> (\checkmark) B = Bristol (BS3)	= included in m	ean calculations,	$(\boldsymbol{\chi}) = \text{excluc}$	- = Parallel, P = Perpendicular, led from mean calculations el Hempstead (HP3 9RT), T =	[NS]
ST	RUCTUR/	AL SOILS				Compiled By	1			Date	Cont	tract Ref:	
	1a Princess Street		Fr	fancesca	Bennet	t-	FRANCE	SCA BENNE	ТТ	28.01.20)	_	
Plan	Bedmin Briste BS3 4	ol	Contract			Penny Pi	e Park Foot	bridge				784312	AGS

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)		Lab location
BH01	8	7.80	D+L	70	90	1.305	90	0.16	1.30	0.21 (🗸)	4.4		в
BH01	8	7.80	A+P	90	53	1.800	78	0.30	1.22	0.36 (🗸)	4.4		в
													+
													+
													+
			Desults							Kevi			
$I_{s}(50)$ Mean Diame $I_{s}(50)$ Strength Anis	50) Mean Axial tests = 0.36 MN/m ² 50) Mean Diametral tests = 0.21 MN/m ² 50) Strength Anisotropy Index = 1.72 (calculated from highest and lowest diametral and axial $I_s(50)$ ratio) <u>ote:</u> Size Correction Factor (F) calculated using F = $(D_e/50)^{0.45}$ (where D_e is equivalent core diameter).						denotes Non- Point Load In	standard Test. <u>dex column:</u> (\checkmark) B = Bristol (BS3)	= included in m	ean calculations,	$(\boldsymbol{\chi}) = \operatorname{exclu}_{\boldsymbol{\lambda}}$	L = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]
ST	RUCTUR	AL SOILS				Compiled By	1			Date	Cor	ntract Ref:	
	1a Princess Street		Fr	fancesca	Bennet	t	FRANCE	SCA BENNE	тт	28.01.20)		
flen	Bedmin Briste BS3 4	ol	Contract			Penny Pi	e Park Foot	bridge				784312	AGS

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH01	9	8.50	D+L	46	94	0.015	94	0.00	1.33	0.00 (🗸)	8.6		в
BH01	9	8.50	A+P	94	45	0.140	73	0.03	1.19	0.03 (🗸)	8.6		в
	1												
	1			1									
	+			+									+
	+			+									+
	+			+									+
	+			+									+
				+									+
	+			+									+
				+		+							+
													+
				+									
	_	ļ											
I _s (50) Mean Axial te I _s (50) Mean Diamet I _a (50) Strength Anis <u>Note:</u> Size Correctio	tral tests = 0 M	N/m ²	$\frac{\text{Results}}{\text{ed from high}}$		ametral and axial quivalent core dia	I _s (50) ratio) ameter).	denotes Non- Point Load In	-standard Test. $\underline{\text{ndex column:}}$ (\checkmark) B = Bristol (BS3)	= included in m	ean calculations,	$(\boldsymbol{\chi}) = \text{excluc}$	= Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]
► ST	STRUCTURAL SOILS					Compiled By	y			Date	Cont	tract Ref:	
	a Princes	s Street	Fr	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20)		
Bedminster Bristol BS3 4AG								784312	AG				

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH01	11	9.45	D+L	45	88	0.135	88	0.02	1.29	0.02 (🗸)	7.7		в
BH01	11	9.45	A+P	88	33	0.400	61	0.11	1.09	0.12 (🗸)	7.7		в
													+ -
													+-
													+
													+
													+
							[
							ſ						
$I_{s}(50)$ Mean Axial to $I_{s}(50)$ Mean Diame $I_{a}(50)$ Strength Ani <u>Note:</u> Size Correction	etral tests = 0 02	2 MN/m^2	$\frac{\text{Results}}{\text{d from high}_{\text{F}}}$		ametral and axial quivalent core dia	l _s (50) ratio) ameter).	denotes Non- Point Load In	-standard Test. $\underline{\text{dex column:}}(\checkmark)$ B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \text{exclude}$	= Parallel, P = Perpendicular, ed from mean calculations l Hempstead (HP3 9RT), T =	
^						Compiled By	y			Date	Cont	ract Ref:	
	STRUCTURAL SOILS 1a Princess Street	Fi	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20)			
<u>fo</u>	Bedmin Bristo BS3 4/	ol	Contract:				e Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	t Rock Type	Lab location
BH02	3	10.40	A+P	88	68	2.660	87	0.35	1.28	0.45 (🗸)	2.2		в
BH02	3	10.40	I+L	68	50	1.180	66	0.27	1.13	0.31	2.2		в
													+
													+
													+
													+
													+
					<u> </u>								
I _s (50) Mean Axial te Unable to calculate <u>Note:</u> Size Correctio	ests = 0.45 MN/ ∋ I _a (50) Strength on Factor (F) ca	/m ² I Anisotropy Inde alculated using F	$\frac{\text{Results}}{\text{ex from this}}$ = $(D_e/50)^\circ$		quivalent core dia	ameter).	denotes Non- Point Load In	-standard Test. $\underline{\text{dex column:}}$ (\checkmark) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \text{exclu}$	L = Parallel, P = Perpendicular, ided from mean calculations iel Hempstead (HP3 9RT), T =	[NS]
_ ^ ST	RUCTUR/	AL SOILS				Compiled By	/			Date	Cor	ntract Ref:	
	1a Princes	s Street	Fi	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20	b		
Bedminster Bristol BS3 4AG							784312	AG					

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH02	4	11.00	D+L	47	88	7.750	88	1.00	1.29	1.29 (🗸)	2.2		в
BH02	4	11.00	A+P	88	50	10.045	75	1.79	1.20	2.15 (🗸)	2.2		в
													+
				+	+								+
	-			+									+
	-												+
		++		<u> </u>	+	+							+
				+									+
				<u> </u>									
				+				 					
					+			ļ!					
				<u> </u>				ļ!					
	_												
	_												
I _s (50) Mean Axial te I _s (50) Mean Diamet I _a (50) Strength Anis <u>Note:</u> Size Correctio	tral tests = 1 29	9 MN/m ²	$\frac{\text{Results}}{\text{d from high}}$		ametral and axial quivalent core dia	I _s (50) ratio) ameter).	denotes Non- Point Load In	-standard Test. <u>ndex column:</u> (✔) B = Bristol (BS3 -	= included in m	ean calculations,	$(\boldsymbol{\chi}) = \text{excluc}$	_ = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]
► ST		AL SOILS				Compiled By	y			Date	Cont	tract Ref:	
	la Princes	s Street	Fr	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20	D		
<u>fo</u>	Bedmin Briste BS3 4	ol	Contract	:		Penny Pi	ie Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	t Rock Type	Lab location
BH02	5	11.30	A+P	87	67	10.855	86	1.46	1.28	1.87 (🗸)	3.0		в
BH02	5	11.30	I+L	55	44	1.990	56	0.65	1.05	0.68	3.0		в
(50) Mean Axial to Inable to calculate Iote:Size Correction	ests = 1.87 MN e I _a (50) Strengt on Factor (F) c	I/m² th Anisotropy Ir alculated using	$\frac{\text{Results}}{\text{ndex from th}}$	nis dataset.) ^{0.45} (where D _e is	s equivalent core	diameter).	[NS] denotes N Point Load Ir	lon-standard Te <u>idex column:</u> (✔) B = Bristol (BS3	st.) = included in	mean calculatior	ns. (y) = ex	k, L = Parallel, P = Perpendicula ccluded from mean calculations emel Hempstead (HP3 9RT), T =	
STI	RUCTUR	AL SOILS				Compiled By	1			Date	Со	ntract Ref:	
	a Princes	s Street		O.N	les		DAISY	RICHARDS		29.01.20)		
flen	Bedmin Bristo BS3 4	ol	Contract			Penny Pie	e Park Foot	bridge				784312	A(

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH02	6	11.90	D+L	40	90	0.950	90	0.12	1.30	0.15 (🗸)	3.0		в
BH02	6	11.90	A+P	90	30	1.350	59	0.39	1.07	0.42 (🗸)	3.0		в
													+
			Desults							Kasa			
I _s (50) Mean Axial tr I _s (50) Mean Diame I _a (50) Strength Ani <u>Note:</u> Size Correctio	etral tests = 0.15 sotropy Index =	5 MN/m ² 2.76 (calculated	$\frac{\text{Results}}{\text{I from high}}$ $= (D_e/50)^0$	est and lowest dia ⁴⁵ (where D _e is ec	ametral and axial quivalent core dia	I₅(50) ratio) meter).	ean calculations,	$(\boldsymbol{\chi}) = \operatorname{excluo}$	L = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]			
ST	RUCTUR	AL SOILS				Compiled By	,			Date	Con	tract Ref:	
	la Princes	s Street	Fr	Francesca Bennett FRANCESCA BENNETT 28									
Plan	Bedmin Briste BS3 4	ol	Contract			Penny Pi			784312	AGS			

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	t Rock Type	Lab location
BH02	7	12.40	A+P	88	56	9.465	79	1.51	1.23	1.86 (🗸)	2.5		в
BH02	7	12.40	I+P	67	44	2.215	61	0.59	1.10	0.65	2.5		в
Unable to calculate	(50) Mean Axial tests = 1.86 MN/m ² nable to calculate $I_{a}(50)$ Strength Anisotropy Index from this dataset. <u>ote:</u> Size Correction Factor (F) calculated using F = $(D_{e}/50)^{0.45}$ (where D_{e} is equivalent core diameter).							-standard Test. Idex column: (✔)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \operatorname{exclu}$	L = Parallel, P = Perpendicular, ded from mean calculations lel Hempstead (HP3 9RT), T =	
► ST	RUCTUR	AL SOILS				Compiled By	1			Date	Cor	ntract Ref:	
	la Princes	s Street	Fi	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20)		
Plan	Bedmin Bristo BS3 4/	ol	Contract				e Park Foot	bridge				784312	AGS

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH02	8	12.90	D+L	50	88	1.330	88	0.17	1.29	0.22 (✔)	1.9		в
BH02	8	12.90	A+P	88	49	12.380	74	2.25	1.19	2.69 (🗸)	1.9		в
													+
													+
													+
													+
													+
													+
										-			+
										-			+
				<u> </u>						_			
		ļļ											
		ļ											
I (50) Mean Diame	D) Mean Axial tests = 2.69 MN/m ² D) Mean Diametral tests = 0.22 MN/m ² D) Strength Anisotropy Index = 12.15 (calculated from highest and lowest diametral and axial $I_s(50)$ rational experimentary of the exp							-standard Test. Idex column: (✔)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \text{exclude}$	= Parallel, P = Perpendicular, ed from mean calculations I Hempstead (HP3 9RT), T =	[NS]
▲ S1						Compiled By	/			Date	Cont	ract Ref:	
	STRUCTURAL SOILS 1a Princess Street Francesca Bennett FRANCESCA BENNE							SCA BENNE	TT	28.01.20	D		
<u>f</u> on	Bedmin Briste BS3 4	ol	Contract:	:		Penny Pi	e Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH02	10	14.50	D+L	45	89	3.315	89	0.42	1.30	0.54 (🗸)	2.8		в
BH02	10	14.50	A+P	89	54	5.465	78	0.89	1.22	1.09 (🗸)	2.8		в
													+
						<u> </u>							
													+
			Desults							Kov			
l _s (50) Mean Axial te l _s (50) Mean Diamet l _a (50) Strength Anis <u>Note:</u> Size Correctio	tral tests = 0 54	1 MN/m ²	$\frac{\text{Results}}{\text{d from high}}$		I _s (50) ratio) ameter).	denotes Non- Point Load In Lab location:	= included in m	ean calculations.	$(\boldsymbol{\gamma}) = \operatorname{excluo}$	L = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]		
ST		AL SOILS				Compiled By	y			Date	Con	tract Ref:	
	a Princes	s Street	Fi	fancesca	st and lowest diametral and axial I₅(50) ratio) Bit Is equivalent core diameter). Bit Is equivalent core diameter).)		
<u>fo</u>	Bedmin Bristo BS3 4	ol	Contract	:		Penny Pi	ie Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH03	1	6.10	D+L	45	87	1.350	87	0.18	1.28	0.23 (🗸)	3.9		в
BH03	1	6.10	A+P	87	53	4.770	77	0.81	1.21	0.98 (🗸)	3.9		в
	_												
													+
													+
(50) Mean Diamet	$\frac{\text{Results}}{\text{Results}}$) Mean Axial tests = 0.98 MN/m ²) Mean Diametral tests = 0.23 MN/m ²) Strength Anisotropy Index = 4.3 (calculated from highest and lowest diametral and axial I _s (50) ratio) Size Correction Factor (F) calculated using F = (D _e /50) ^{0.45} (where D _e is equivalent core diameter).							standard Test. dex column: (✔)	= included in m	ean calculations.	$(\boldsymbol{\chi}) = \text{exclude}$	= Parallel, P = Perpendicular, d from mean calculations Hempstead (HP3 9RT), T =	[NS]
ST	RUCTUR	AL SOILS				Compiled By	,			Date	Contra	act Ref:	
	a Princes	s Street			Bennet	t	FRANCE	SCA BENNE	тт	28.01.20)		
flan	Bedmin Briste BS3 4	ol	Contract			Penny Pi	e Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH03	4	7.40	I+P	65	53	1.340	66	0.31	1.13	0.35	3.9		в
BH03	4	7.40	I	50	34	1.060	47	0.49	0.97	0.47	3.9		в
					-								
													+
Unable to calculate Note:Size Correction	$\frac{Results}{Results}$ able to calculate I _a (50) Strength Anisotropy Index from this dataset. te:Size Correction Factor (F) calculated using F = (D _e /50) ^{0.45} (where D _e is equivalent core diameter).							standard Test. dex column: (✔)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \operatorname{excluo}$	L = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]
► ST	RUCTUR/	AL SOILS				Compiled By	/			Date	Con	tract Ref:	
	1a Princes	s Street	F7	iancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20	D		
Ren	Bedmin Bristo BS3 4/	ol	Contract:				e Park Foot	bridge				784312	AGS

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH03	5	7.60	D+L	65	75	0.235	75	0.04	1.20	0.05 (🗸)	6.1		в
BH03	5	7.60	A+P	75	56	0.480	73	0.09	1.19	0.11 (🗸)	6.1		в
													+
													+
													+
I _s (50) Mean Axial te I _s (50) Mean Diame I _a (50) Strength Ania <u>Note:</u> Size Correctio	etral tests = 0.05 sotropy Index =	5 MN/m ² 2.12 (calculated	$\frac{\text{Results}}{\text{from high}}$	est and lowest dia 45 (where D _e is eq	ametral and axial quivalent core dia	ean calculations,	$(\boldsymbol{\chi}) = \text{excluc}$	_ = Parallel, P = Perpendicular, led from mean calculations el Hempstead (HP3 9RT), T =	[NS]				
ST	RUCTUR	AL SOILS				Compiled By	1			Date	Cont	tract Ref:	
	la Princes	s Street	Fr	fancesca	Bennet	t	28.01.20)					
Pan	Bedmin Briste BS3 4	ol	Contract			Penny Pi			784312	AGS			

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH03	6	8.60	D	65	88	0.255	88	0.03	1.29	0.04 (🗸)	15		в
BH03	6	8.60	А	88	48	0.135	73	0.03	1.19	0.03 (🗸)	15		в
													\square
													+
													+
													+
				Image: state of the s									+
				Image: second									
													+
													+
													+
													+
													+
			Dessilte							Kasa			
I _s (50) Mean Axial te I _s (50) Mean Diame I _a (50) Strength Anis <u>Note:</u> Size Correctio	tral tests = 0.04 sotropy Index =	MN/m ² 1.42 (calculated	$\frac{\text{Results}}{\text{from high}}$	est and lowest dia 45 (where D _e is early a second strain of the	ametral and axial quivalent core dia	ean calculations,	$(\boldsymbol{\chi}) = \text{exclud}$. = Parallel, P = Perpendicular, led from mean calculations el Hempstead (HP3 9RT), T =	[NS]				
ST	RUCTUR	AL SOILS				Compiled By	,			Date	Cont	tract Ref:	
	a Princes	s Street	Fr	Francesca Bennett FRANCESCA BENNETT 28.									
Pan	Bedmin Bristo BS3 4	ol	Contract:			Penny Pi			784312	AGS			

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH03	7	9.40	D	50	86	0.120	86	0.02	1.28	0.02 (🗸)	7.7		в
BH03	7	9.40	А	86	43	0.125	69	0.03	1.15	0.03 (🗸)	7.7		в
													+-
													+
													+-
				Image:									+-
													+-
													+-
													+
													+-
													+
			Desults							Kevi			
I _s (50) Mean Axial te I _s (50) Mean Diame I _a (50) Strength Ani: <u>Note:</u> Size Correctio	etral tests = 0.02 sotropy Index =	2 MN/m ² 1.48 (calculated	$\frac{\text{Results}}{\text{from high}}$	est and lowest dia ⁴⁵ (where D _e is ea	ametral and axial quivalent core dia	ean calculations,	$(\boldsymbol{\chi}) = \operatorname{exclus}$	L = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]				
ST	RUCTUR	AL SOILS				Compiled By	1			Date	Con	tract Ref:	
	la Princes	s Street	Fr	Francesca Bennett FRANCESCA BENNETT 28									
Plan	Bedmin Briste BS3 4	ol	Contract:			Penny Pi			784312	AGS			

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH03	9	10.15	D	50	84	0.075	84	0.01	1.26	0.01 (🗸)	11		в
BH03	9	10.15	А	84	50	0.095	73	0.02	1.19	0.02 (🗸)	11		в
													\square
													+
													+
													+
													+-
													+
													+
													+-
													+-
													+
I _s (50) Mean Axial te I _s (50) Mean Diame I _a (50) Strength Ania <u>Note:</u> Size Correctio	etral tests = 0.01 sotropy Index =	I MN/m ² 1.57 (calculated	$\frac{\text{Results}}{\text{I from high}}$ $= (D_e/50)^{0}$	est and lowest dia 45 (where D _e is eq	ametral and axial quivalent core dia	I₅(50) ratio) meter).	ean calculations,	$(\boldsymbol{\chi}) = \text{exclud}$. = Parallel, P = Perpendicular, led from mean calculations l Hempstead (HP3 9RT), T =	[NS]			
ST	RUCTUR	AL SOILS				Compiled By	1			Date	Cont	tract Ref:	
	la Princes	s Street	Francesca Bennett FRANCESCA BENNETT 28										
Plan	Bedmin Bristo BS3 4	ol	Contract:			Penny Pi			784312	AGS			

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	t Rock Type	Lab location
BH04	3	5.70	A+P	90	37	1.915	65	0.45	1.13	0.51 (🗸)	4.3		в
BH04	3	5.70	I+L	60	47	0.925	60	0.26	1.08	0.28	4.3		в
				-									
				+									
													_
	_			+			ļ						
	_			<u> </u>			ļļ						
	_												
I _s (50) Mean Axial te Unable to calculate <u>Note:</u> Size Correctio	ests = 0.51 MN/ I _a (50) Strength In Factor (F) ca	/m ² 1 Anisotropy Inde alculated using F	$\frac{\text{Results}}{\text{ex from this}}$ = $(D_e/50)^0$		quivalent core dia	ameter).	denotes Non- Point Load In	-standard Test. $\underline{\text{Modex column:}}$ (\checkmark) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \text{exclu}$	L = Parallel, P = Perpendicular, ided from mean calculations nel Hempstead (HP3 9RT), T =	[NS]
► ST		AL SOILS				Compiled By	/			Date	Cor	ntract Ref:	
	a Princes	s Street	Fi	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20	0		
<u>flo</u> n	Bedmin Briste BS3 4	ol	Contract				e Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH04	4	6.10	D+L	60	87	0.015	87	0.00	1.28	0.00 (🗸)	8.4		в
BH04	4	6.10	A+P	87	39	0.115	66	0.03	1.13	0.03 (🗸)	8.4		в
													+
													+
				+									+
													+
													+
		++			+								+
													+
													+
										-	<u> </u>		
											<u> </u>		
											<u> </u>		
I _s (50) Mean Axial te I _s (50) Mean Diamet I _a (50) Strength Anis <u>Note:</u> Size Correctio	etral tests = 0 MI	IN/m ²	$\frac{\text{Results}}{\text{ted from high}}$ $F = (D_e/50)^{0}$		Jiametral and axia quivalent core dia	al I _s (50) ratio) ameter).	denotes Non- Point Load In	-standard Test. <u>ndex column:</u> (✔) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \text{exclud}$	= Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]
► ST	RUCTUR					Compiled By	y			Date	Cont	tract Ref:	
	1a Princes	s Street	Fi	Francesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20	D		
<u>f</u> or	Bedmin Bristo BS3 4/	ol	Contract:				e Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)		Lab location
BH04	5	6.80	A+P	87	54	3.635	77	0.61	1.22	0.74 (🗸)	3.4		в
BH04	5	6.80	I+L	55	40	0.410	53	0.15	1.03	0.15	3.4		в
													++
	+			+									+
													+
													+
			Results							Kev			
I _s (50) Mean Axial te Unable to calculate <u>Note:</u> Size Correctio	(50) Strenath	Anisotropy Ind	ex from this	s dataset.	quivalent core dia	ameter).	denotes Non- Point Load In	-standard Test. $\underline{\text{dex column:}}$ (\checkmark) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \operatorname{exclu}$	L = Parallel, P = Perpendicular, ided from mean calculations iel Hempstead (HP3 9RT), T =	[NS]
ST	RUCTUR					Compiled By	/			Date	Cor	ntract Ref:	
	a Princes	s Street	Fi	Francesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20	D		
Jon	Bedmin Bristo BS3 4/	ol	Contract				e Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	t Rock Type	Lab location
BH04	6	7.25	A+P	86	53	1.340	76	0.23	1.21	0.28 (🗸)	4.3		в
BH04	6	7.25	I+P	35	26	0.930	34	0.80	0.84	0.68	4.3		в
				-									
													+
													+
													+
	_			+		+							
	_	ļ											
	_	ļ			<u> </u>								
I _s (50) Mean Axial te Unable to calculate <u>Note:</u> Size Correctio	ests = 0.28 MN/ l _a (50) Strength on Factor (F) ca	/m ² 1 Anisotropy Inde alculated using F	$\frac{\text{Results}}{\text{ex from this}}$ = $(D_e/50)^0$		quivalent core dia	ameter).	denotes Non- Point Load In	-standard Test. $\underline{\text{dex column:}}$ (\checkmark) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \operatorname{exclu}$	L = Parallel, P = Perpendicular, ided from mean calculations iel Hempstead (HP3 9RT), T =	[NS]
▲ ST	RUCTUR	AL SOILS				Compiled By	y			Date	Cor	ntract Ref:	
	la Princes	s Street	Fi	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20)		
flen	Bedmin Bristo BS3 4	ol	Contract				e Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH04	7	7.40	D+L	42	89	1.355	89	0.17	1.30	0.22 (🗸)	3.7		в
BH04	7	7.40	A+P	89	59	2.205	82	0.33	1.25	0.41 (🗸)	3.7		в
			Desults							Kau			
$I_s(50)$ Mean Diame $I_s(50)$ Strength Ani	$\frac{\text{Results}}{\text{tests} = 0.41 \text{ MN/m}^2}$ etral tests = 0.22 MN/m ² isotropy Index = 1.86 (calculated from highest and lowest diametral and axial I _s (50) ratio) ion Factor (F) calculated using F = (D _e /50) ^{0.45} (where D _e is equivalent core diameter).						denotes Non- Point Load In	standard Test. <u>dex column:</u> (\checkmark) B = Bristol (BS3)	= included in m	ean calculations.	$(\boldsymbol{\gamma}) = \text{exclude}$	L = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]
ST	RUCTUR	AL SOILS				Compiled By	,			Date	Con	tract Ref:	
	la Princes	s Street	Fr	fancesca	Bennet	t-	FRANCE	SCA BENNE	TT	28.01.20)		
Plan	Bedmin Briste BS3 4	ol	Contract			Penny Pi	e Park Foot	bridge				784312	AGS

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH04	8	8.00	D+L	48	88	0.050	88	0.01	1.29	0.01 (🗸)	12		в
BH04	8	8.00	A+P	88	42	0.325	69	0.07	1.15	0.08 (🗸)	12		в
													+
													+
													+
													+
	_												
l _s (50) Mean Axial te l _s (50) Mean Diamet l _a (50) Strength Anis <u>Note:</u> Size Correctio	tral tests = 0 01	1 MN/m ²	$\frac{\text{Results}}{\text{d from high}}$	est and lowest dia . ⁴⁵ (where D _e is e	ametral and axial quivalent core dia	I₅(50) ratio) ameter).	denotes Non- Point Load In	-standard Test. <u>dex column:</u> (\checkmark) B = Bristol (BS3)	= included in m	ean calculations.	$(\boldsymbol{\gamma}) = \text{exclude}$	L = Parallel, P = Perpendicular, ded from mean calculations el Hempstead (HP3 9RT), T =	[NS]
	RUCTUR					Compiled By	/			Date	Cont	tract Ref:	
	a Princes	s Street	Fi	iancesca	Bennet	t	FRANCE	SCA BENNE	тт	28.01.20	D		
fign	Bedmin Bristo BS3 4	ol	Contract:			•	e Park Foot	bridge				784312	AG

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH04	10	9.35	D+L	40	88	0.900	88	0.12	1.29	0.15 (🗸)	5.1		в
BH04	10	9.35	A+P	88	56	1.310	79	0.21	1.23	0.26 (🗸)	5.1		в
							ſ						
I _s (50) Mean Axial t I _s (50) Mean Diame I _a (50) Strength An <u>Note:</u> Size Correcti	etral tests = 0 15	5 MN/m ²	$\frac{\text{Results}}{\text{d from high}}$		ametral and axial quivalent core dia	I _s (50) ratio) ameter).	denotes Non- Point Load In	standard Test. <u>dex column:</u> (\checkmark) B = Bristol (BS3)	= included in m	nean calculations,	$(\boldsymbol{\chi}) = \text{exclude}$	= Parallel, P = Perpendicular, ed from mean calculations I Hempstead (HP3 9RT), T =	[NS]
▲ \$7	TRUCTUR					Compiled By	y			Date	Conti	ract Ref:	
	1a Princes	s Street	Fi	Fancesca	Bennet	t	FRANCE	SCA BENNE	TT	28.01.20)		
<u>fo</u>	Bedmin Bristo BS3 4/	ol	Contract:				e Park Foot	bridge				784312	AG

DETERMINATION OF POINT LOAD STRENGTH

In accordance with ISRM 1974-2006

Exploratory Position ID	Sample Ref	Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH03	4	7.40	I+L	65	53	1.340	66	0.31	1.13	0.35	3.9		в
BH03	4	7.40	Ι	50	34	1.060	47	0.49	0.97	0.47	3.9		в
Inable to calculate l <u>ote:</u> Size Correcti	e I _a (50) Strengt ion Factor (F) c	h Anisotropy I alculated usin	<u>Results</u> ndex from tł g F = (D _e /50	nis dataset.) ^{0.45} (where D _e is	equivalent core	e diameter).	_[NS] denotes N Point Load Ir	lon-standard Tes <u>dex column:</u> (✔) B = Bristol (BS3	st.) = included in	mean calculation	is. (y) = ex	k, L = Parallel, P = Perpendicula cluded from mean calculations emel Hempstead (HP3 9RT), T =	
ST	RUCTUR	AL SOILS				Compiled By	1			Date	Cor	ntract Ref:	
	a Princes	s Street		D.R	les		DAISY	RICHARDS		29.01.20)		
flen	Bedminster Contract: Bristol Penny Pie Park Footbridge BS3 4AG							784312	A				

GINT_LIBRARY_V8_07.GLB : L - SUMMARY OF POINT LOAD TESTS - A4L : 784312 - PENNY PIE PARK FOOTBRIDGE.GPJ : 29/01/20 09:36 : DR1 :

Preparation in accordance with ASTM D4543-08 Testing in accordance with ISRM 1974-2006

Borehole: BH01

Sample Ref: 1 Sample Type: C

Depth (m): 9.00

Bulk Density (Mg/m³): 2.44

Length (mm): 169.69 Test Duration (mins:secs): 6:18 Dry Density (Mg/m³): 2.28 Diameter (mm): 89.96 Stress Rate (kN/min): 6.0

UCS (MPa): 0.8

Moisture Content (%): 6.7 Length/Diameter Ratio: 1.89 Load at Failure (kN): 5.0

Failure Type: Plastic

Note: Axis of loading parallel to core axis Description: Grey MUDSTONE Specimen Preparation: Specimen was not recored. Sample tolerance checks: Straightness: PASS. Flatness: FAIL. Perpendicularity: FAIL. Remarks: Too soft to measure tolerances

Front view (pre-test)

Rear view (pre-test)

Front view (post-test)

Rear view (post-test)

Samples delivered from site to storage facility. Samples are stored in a frost free environment, at temperatures >4°C Compression machine: Impact CT340 2000kN Auto Compression Machine Serial No. CT340-22. SSL No. 011076

STRUCTURAL SOILS 1a Princess Street Bedminster **Bristol** BS3 4AG

Compiled By				
Francesca Bennett	FRANCESCA BENNETT	28/01/20		
Contract	Job No			
Penny Pie Park Footbrid	lge 784312	AGS		

Preparation in accordance with ASTM D4543-08 Testing in accordance with ISRM 1974-2006

Borehole: BH02

Sample Ref: **1** Sample Type: **C**

Depth (m): 10.40

Bulk Density (Mg/m³): **2.46** Length (mm): **153.70** Test Duration (mins:secs): **10:28**

n (mins:secs): **10:28** UCS (MPa): **1.1**

Dry Density (Mg/m³): **2.36** Diameter (mm): **89.08** Stress Rate (kN/min): **6.0** Failure Ty Moisture Content (%): **4.2** Length/Diameter Ratio: **1.73** Load at Failure (kN): **7.1**

Failure Type: Plastic

Note: Axis of loading parallel to core axis Description: Grey MUDSTONE Specimen Preparation: Specimen was not recored. Sample tolerance checks: Straightness: PASS. Flatness: FAIL. Perpendicularity: FAIL. Remarks: Too soft to measure tolerances

Front view (pre-test)

Rear view (pre-test)

Front view (post-test)

Rear view (post-test)

Samples delivered from site to storage facility. Samples are stored in a frost free environment, at temperatures >4°C Compression machine: Impact CT340 2000kN Auto Compression Machine Serial No. CT340-22. SSL No. 011076

•	STRUCTURAL SOILS	Compiled By			
In.	1a Princess Street	Francesca Bennett	F	FRANCESCA BENNETT	
figh	Bedminster	Contract		Job No	
	Bristol BS3 4AG	Penny Pie Park Footbrid	dge	784312	AGS

Preparation in accordance with ASTM D4543-08 Testing in accordance with ISRM 1974-2006

Borehole: BH02

Sample Ref: 2 Sample Type: C

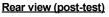
Depth (m): 14.60

Bulk Density (Mg/m³): **2.60**

Length (mm): **231.30** Test Duration (mins:secs): **13:44** UCS (MPa): **23.0** Dry Density (Mg/m³): **2.53** Diameter (mm): **87.14** Stress Rate (kN/min): **6.0** Failure Type Moisture Content (%): **3.0** Length/Diameter Ratio: **2.65** Load at Failure (kN): **137.4**

Failure Type: Axial cleavage

Note: **Axis of loading parallel to core axis** Description: **Grey SILTSTONE** Specimen Preparation: **Specimen was not recored.** Sample tolerance checks: Straightness: **PASS**. Flatness: **PASS**. Perpendicularity: **PASS**.


Front view (pre-test)

Rear view (pre-test)

Front view (post-test)

Samples delivered from site to storage facility. Samples are stored in a frost free environment, at temperatures >4°C Compression machine: Impact CT340 2000kN Auto Compression Machine Serial No. CT340-22. SSL No. 011076

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

Compiled By				
Francesca Bennett	FRANCESCA BENNETT	28/01/20		
Contract	Job No			
Penny Pie Park Footbrid	lge 784312	AGS		

Preparation in accordance with ASTM D4543-08 Testing in accordance with ISRM 1974-2006

Borehole: BH04

Sample Ref: 1 Sample Type: C

Depth (m): 6.60

Bulk Density (Mg/m³): 2.58

Length (mm): 188.45 Test Duration (mins:secs): 11:02 UCS (MPa): 9.7 Dry Density (Mg/m³): 2.49 Diameter (mm): 89.52 Stress Rate (kN/min): 6.0

Moisture Content (%): 3.6 Length/Diameter Ratio: 2.11 Load at Failure (kN): 60.8

Failure Type: Axial cleavage

Note: Axis of loading parallel to core axis Description: Grey MUDSTONE/SILTSTONE Specimen Preparation: Specimen was not recored. Sample tolerance checks: Straightness: PASS. Flatness: PASS. Perpendicularity: PASS.

Front view (pre-test)

Rear view (pre-test)

Rear view (post-test)

Samples delivered from site to storage facility. Samples are stored in a frost free environment, at temperatures >4°C Compression machine: Impact CT340 2000kN Auto Compression Machine Serial No. CT340-22. SSL No. 011076

	STRUCTURAL SOILS	Compiled By				
	1a Princess Street	Francesca Bennett	FRAI	NCESCA BENNETT	28/01/20	
		Contract	Jol	b No		
		Penny Pie Park Footbric	lge	784312	AGS	

TESTING VERIFICATION CERTIFICATE

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **29/01/2020 11:55:30**.

Testing reported after this date is not covered by this Verification Certificate.

hSich

Approved Signatory Luke Fisher (Materials Laboratory Manager)

(Head Office) Bristol Laboratory Unit 1A, Princess Street Bedminster Bristol BS3 4AG

Castleford Laboratory The Potteries, Pottery Street Castleford West Yorkshire WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory Anerley Court, Half Moon Lane Hildenborough Tonbridge TN11 9HU

gga.		Contract:	Job No:
fign	STRUCTURAL SOILS LTD	Penny Pie Park Footbridge	784312 AGS

APPENDIX D ENVIRONMENTAL LABORATORY TESTING

Lab Sample ID Client Sample No Client Sample ID Depth to Top		Limit of Detection		19/12154/2 2 TT01 1.00	19/12154/3 3 TT01 2.00	19/12154/4 4 TT01 3.00
Depth to Bottom Date Sampled Sample Type Sample Matrix Code % Moisture at <40C	% w/w	Limit of	Method P-T-044	04-Dec-19 Soil - ES 4AE	04-Dec-19 Soil - ES 4ABE	04-Dec-19 Soil - ES 4ABE
% Stones >10mm	% w/w % w/w	0.1	A-T-044 A-T-044	9.1	6.9	29
рН	рН	0.01	A-T-031s		7.65	
pH BRE	рН	0.01	A-T-031s	7.74		7.32
Ammonium NH4 BRE (water sol 2:1)	mg/l	1	A-T-033s	1.26		3.16
Chloride BRE, SO4 equiv. (water sol 2:1) Nitrate BRE, SO4 equiv. (water	mg/l	7	A-T-026s	<7		8
sol 2:1)	mg/l	0.4	A-T-026s	13.6		26.3
Sulphate (water sol 2:1)	g/l	0.01	A-T-026s	10.0	0.13	2010
Sulphate BRE (water sol 2:1)	mg/l	10	A-T-026s	45		295
Sulphate BRE (acid sol)	% w/w	0.02	A-T-028s	0.25		0.28
Sulphur BRE (total)	% w/w	0.01	A-T-024s	0.15		0.16
Magnesium BRE (water sol 2:1)	mg/l	1	A-T-SOLMETS	5		26
Cyanide (free)	mg/kg	1	A-T-042sFCN	-	<1	
Phenols - Total by HPLC	mg/kg	0.2	A-T-050s		<0.2	
Fraction of organic carbon	N/A	0.0003	A-T-032 FOC		0.1962	
Arsenic	mg/kg	1	A-T-024s		80	
Beryllium	mg/kg	0.5	A-T-024s		4.5	
Boron (water soluble) Cadmium	mg/kg	1 0.5	A-T-027s		2 3.1	
Copper	mg/kg mg/kg	0.5	A-T-024s A-T-024s		275	
Chromium	mg/kg	1	A-T-024s		61	
Chromium (hexavalent)	mg/kg	1	A-T-040s		<1	
Chromium (trivalent)	mg/kg	1	Calc		61	
Lead	mg/kg	1	A-T-024s		2020	
Mercury	mg/kg	0.17	A-T-024s		0.82	
Nickel	mg/kg	1	A-T-024s		87	
Selenium Vanadium	mg/kg	1 1	A-T-024s A-T-024s		3 87	
Zinc	mg/kg mg/kg	5	A-T-024s		1130	
Asbestos in Soil (inc. matrix) Asbestos in soil			A-T-045		NAD	
Asbestos ACM - Suitable for Water Absorption Test?			A-T-045		N/A	
PAH-16MS						
Acenaphthene	mg/kg	0.01	A-T-019s		<0.01	
Acenaphthylene	mg/kg	0.01	A-T-019s		0.03	
Anthracene	mg/kg	0.02	A-T-019s		0.1	
Benzo(a)anthracene	mg/kg	0.04	A-T-019s		3.38	
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg mg/kg	0.04 0.05	A-T-019s A-T-019s		3.08 3.52	
Benzo(ghi)perylene	mg/kg	0.05	A-T-019s		1.41	
Benzo(k)fluoranthene	mg/kg	0.07	A-T-019s		1.32	
Chrysene	mg/kg	0.06	A-T-019s		3.24	
Dibenzo(ah)anthracene	mg/kg	0.04	A-T-019s		0.33	
Fluoranthene	mg/kg	0.08	A-T-019s		3.45	
Fluorene	mg/kg	0.01	A-T-019s		<0.01	

Indeno(123-cd)pyrenemg/kg0.03A-T-019s1.79Naphthalenemg/kg0.03A-T-019s<0.03Phenanthrenemg/kg0.03A-T-019s0.18Pyrenemg/kg0.07A-T-019s3.52Total PAH-16MSmg/kg0.01A-T-019s25.4TPH UKCWGAli >C5-C6mg/kg0.01A-T-022s<0.01Ali >C6-C8mg/kg1A-T-055s<1Ali >C6-C10mg/kg1A-T-055s<1Ali >C10-C12mg/kg1A-T-055s<1Ali >C10-C12mg/kg1A-T-055s<1Ali >C10-C12mg/kg1A-T-055s<1Ali >C12-C35mg/kg1A-T-055s<1Ali >C21-C35mg/kg1A-T-055s16Ali >C21-C35mg/kg1A-T-055s95Ai >C21-C35mg/kg0.01A-T-022s<0.01Aro >C3-C7mg/kg0.01A-T-025s3Aro >C10-C12mg/kg1A-T-055s3Aro >C10-C12mg/kg1A-T-055s3Aro >C10-C12mg/kg1A-T-055s3Aro >C12-C16mg/kg1A-T-055s3Aro >C12-C16mg/kg1A-T-055s3Aro >C12-C16mg/kg1A-T-055s3Aro >C12-C16mg/kg1A-T-055s5Aro >C25-C44mg/kg1A-T-055s1 <tr< th=""><th>Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom Date Sampled Sample Type</th><th>Units</th><th>Limit of Detection</th><th>Method</th><th>19/12154/2 2 TT01 1.00 04-Dec-19 Soil - ES</th><th>19/12154/3 3 TT01 2.00 04-Dec-19 Soil - ES</th><th>19/12154/4 4 TT01 3.00 04-Dec-19 Soil - ES</th></tr<>	Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom Date Sampled Sample Type	Units	Limit of Detection	Method	19/12154/2 2 TT01 1.00 04-Dec-19 Soil - ES	19/12154/3 3 TT01 2.00 04-Dec-19 Soil - ES	19/12154/4 4 TT01 3.00 04-Dec-19 Soil - ES
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		'n	Ľ	Me			
Naphthalene mg/kg 0.03 A-T-019s <0.03 Phenanthrene mg/kg 0.03 A-T-019s 0.18 Pyrene mg/kg 0.07 A-T-019s 3.52 Total PAH-16MS mg/kg 0.01 A-T-019s 25.4 TPH UKCWG Ali >C5-C6 mg/kg 0.01 A-T-022s Ali >C5-C6 mg/kg 0.01 A-T-055s <1			0.03	A-T-019s		1.79	
Pyrene mg/kg 0.07 A.T-019s 3.52 Total PAH-16MS mg/kg 0.01 A.T-019s 25.4 TPH UKCWG Ali >C5-C6 mg/kg 0.01 A.T-022s <0.01	Naphthalene		0.03			< 0.03	
Total PAH-16MS mg/kg 0.01 A-T-019s 25.4 TPH UKCWG Ali > C5-C6 mg/kg 0.01 A-T-022s <0.01	Phenanthrene	mg/kg	0.03	A-T-019s		0.18	
TPH UKCWG Ali > C5-C6 mg/kg 0.01 A-T-022s <0.01	Pyrene	mg/kg	0.07	A-T-019s		3.52	
Ali >C5-C6mg/kg0.01A-T-022s<0.01Ali >C6-C8mg/kg0.01A-T-025s<1	Total PAH-16MS		0.01	A-T-019s		25.4	
Ali >C5-C6mg/kg0.01A-T-022s<0.01Ali >C6-C8mg/kg0.01A-T-025s<1							
Ali >C6-C8 mg/kg 0.01 A-T-022s <0.01							
Ali >C8-C10 mg/kg 1 A-T-055s <1							
Ali >C10-C12mg/kg1A-T-055s<1Ali >C12-C16mg/kg1A-T-055s<1							
Ali > C12-C16 mg/kg 1 A-T-055s <1							
Ali >C16-C21 mg/kg 1 A-T-055s 3 Ali >C21-C35 mg/kg 1 A-T-055s 76 Ali >C35-C44 mg/kg 1 A-T-055s 16 Total Aliphatics mg/kg 1 A-T-055s 95 Aro >C5-C7 mg/kg 0.01 A-T-022s <0.01							
Ali > C21-C35 mg/kg 1 A-T-055s 76 Ali > C35-C44 mg/kg 1 A-T-055s 16 Total Aliphatics mg/kg 1 A-T-055s 95 Aro > C5-C7 mg/kg 0.01 A-T-022s <0.01							
Ali >C35-C44 mg/kg 1 A-T-055s 16 Total Aliphatics mg/kg 1 A-T-055s 95 Aro >C5-C7 mg/kg 0.01 A-T-022s <0.01							
Total Aliphatics mg/kg 1 A-T-055s 95 Aro >C5-C7 mg/kg 0.01 A-T-022s <0.01							
Aro >C5-C7 mg/kg 0.01 A-T-022s <0.01							
Aro >C7-C8 mg/kg 0.01 A-T-022s <0.01 Aro >C8-C10 mg/kg 1 A-T-055s 3 Aro >C10-C12 mg/kg 1 A-T-055s 1 Aro >C12-C16 mg/kg 1 A-T-055s 3 Aro >C16-C21 mg/kg 1 A-T-055s 5 Aro >C16-C21 mg/kg 1 A-T-055s 5 Aro >C21-C35 mg/kg 1 A-T-055s 44 Aro >C35-C44 mg/kg 1 A-T-055s 21 Total Aromatics mg/kg 1 A-T-055s 76 TPH (Ali & Aro >C5-C44) mg/kg 1 A-T-055s 169 BTEX - Benzene mg/kg 0.01 A-T-022s <0.01	Total Aliphatics	mg/kg		A-T-055s			
Aro >C8-C10 mg/kg 1 A-T-055s 3 Aro >C10-C12 mg/kg 1 A-T-055s 1 Aro >C12-C16 mg/kg 1 A-T-055s 3 Aro >C16-C21 mg/kg 1 A-T-055s 5 Aro >C16-C21 mg/kg 1 A-T-055s 5 Aro >C21-C35 mg/kg 1 A-T-055s 21 Total Aromatics mg/kg 1 A-T-055s 76 TPH (Ali & Aro >C5-C44) mg/kg 1 A-T-055s 169 BTEX - Benzene mg/kg 0.01 A-T-022s <0.01	Aro >C5-C7	mg/kg		A-T-022s			
Aro >C10-C12 mg/kg 1 A-T-055s 1 Aro >C12-C16 mg/kg 1 A-T-055s 3 Aro >C16-C21 mg/kg 1 A-T-055s 5 Aro >C21-C35 mg/kg 1 A-T-055s 5 Aro >C35-C44 mg/kg 1 A-T-055s 21 Total Aromatics mg/kg 1 A-T-055s 76 TPH (Ali & Aro >C5-C44) mg/kg 1 A-T-055s 169 BTEX - Benzene mg/kg 0.01 A-T-022s <0.01		mg/kg					
Aro >C12-C16 mg/kg 1 A-T-055s 3 Aro >C16-C21 mg/kg 1 A-T-055s 5 Aro >C21-C35 mg/kg 1 A-T-055s 44 Aro >C35-C44 mg/kg 1 A-T-055s 21 Total Aromatics mg/kg 1 A-T-055s 76 TPH (Ali & Aro >C5-C44) mg/kg 1 A-T-055s 169 BTEX - Benzene mg/kg 0.01 A-T-022s <0.01	Aro >C8-C10						
Aro >C16-C21 mg/kg 1 A-T-055s 5 Aro >C21-C35 mg/kg 1 A-T-055s 44 Aro >C35-C44 mg/kg 1 A-T-055s 21 Total Aromatics mg/kg 1 A-T-055s 76 TPH (Ali & Aro >C5-C44) mg/kg 1 A-T-055s 169 BTEX - Benzene mg/kg 0.01 A-T-022s <0.01	Aro >C10-C12	mg/kg	1	A-T-055s		1	
Aro >C21-C35 mg/kg 1 A-T-055s 44 Aro >C35-C44 mg/kg 1 A-T-055s 21 Total Aromatics mg/kg 1 A-T-055s 76 TPH (Ali & Aro >C5-C44) mg/kg 1 A-T-055s 169 BTEX - Benzene mg/kg 0.01 A-T-022s <0.01	Aro >C12-C16	mg/kg	1	A-T-055s			
Aro >C35-C44 mg/kg 1 A-T-055s 21 Total Aromatics mg/kg 1 A-T-055s 76 TPH (Ali & Aro >C5-C44) mg/kg 1 A-T-055s 169 BTEX - Benzene mg/kg 0.01 A-T-022s <0.01		mg/kg	1	A-T-055s			
Total Aromatics mg/kg 1 A-T-055s 76 TPH (Ali & Aro >C5-C44) mg/kg 1 A-T-055s 169 BTEX - Benzene mg/kg 0.01 A-T-022s <0.01		mg/kg	1	A-T-055s			
TPH (Ali & Aro >C5-C44) mg/kg 1 A-T-055s 169 BTEX - Benzene mg/kg 0.01 A-T-022s <0.01	Aro >C35-C44	mg/kg	1	A-T-055s		21	
BTEX - Benzene mg/kg 0.01 A-T-022s <0.01 BTEX - Toluene mg/kg 0.01 A-T-022s <0.01		mg/kg	1	A-T-055s		76	
BTEX - Toluene mg/kg 0.01 A-T-022s <0.01	TPH (Ali & Aro >C5-C44)	mg/kg	1	A-T-055s		169	
0 0		mg/kg					
BTEX - Ethyl Benzene ma/ka 0.01 A-T-022s <0.01	BTEX - Toluene	mg/kg	0.01	A-T-022s			
	BTEX - Ethyl Benzene	mg/kg	0.01	A-T-022s		<0.01	
BTEX - m & p Xylene mg/kg 0.01 A-T-022s <0.01	BTEX - m & p Xylene	mg/kg	0.01	A-T-022s		<0.01	
BTEX - o Xylene mg/kg 0.01 A-T-022s <0.01	BTEX - o Xylene	mg/kg	0.01	A-T-022s		<0.01	
MTBE mg/kg 0.01 A-T-022s <0.01	MTBE	mg/kg	0.01	A-T-022s		<0.01	

Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom		Limit of Detection	19/12154/6 2 TT02 1.00	19/12154/7 3 TT02 2.00	19/12154/8 4 TT02 3.00	19/12154/10 2 TT03 1.00
Date Sampled Sample Type Sample Matrix Code	Units		04-Dec-19 Soil - ES 4AE	04-Dec-19 Soil - ES 4AE	04-Dec-19 Soil - ES 4AE	04-Dec-19 Soil - ES 4AE
% Moisture at <40C % Stones >10mm pH pH BRE	% w/w % w/w pH pH	0.1 0.1 0.01 0.01	11.2 7.5	30.2 21.2 7.38	12.3 7.36	7.6 7.58
Ammonium NH4 BRE (water sol 2:1) Chloride BRE, SO4 equiv.	mg/l	1		2.87		
(water sol 2:1) Nitrate BRE, SO4 equiv. (water	mg/l	7		<7		
sol 2:1) Sulphate (water sol 2:1) Sulphate BRE (water sol 2:1) Sulphate BRE (acid sol) Sulphur BRE (total)	mg/l g/l mg/l % w/w % w/w	0.4 0.01 10 0.02 0.01	0.04	11.6 107 0.35 0.2	0.14	0.06
Magnesium BRE (water sol 2:1) Cyanide (free)	mg/l	1 1	1	11	<1	20
Cyanide (free) Phenols - Total by HPLC Fraction of organic carbon Arsenic Beryllium Boron (water soluble) Cadmium Copper Chromium (hexavalent) Chromium (trivalent) Lead Mercury Nickel Selenium Vanadium Zinc	mg/kg mg/kg Mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.2 0.0003 1 0.5 1 0.5 1 1 1 1 0.17 1 1 1 5	1 <0.2 0.2054 77 5 <1.0 4.4 467 79 <1 79 976 2.02 83 3 93 790		<1 <0.2 0.1749 75 4.7 1.4 4.9 401 62 <1 62 841 2.17 103 3 86 1350	28 <0.2 0.1695 74 5.1 1.7 3.3 520 46 <1 46 531 2.01 81 2 93 933
Asbestos in Soil (inc. matrix) Asbestos in soil			NAD		NAD	NAD
Asbestos ACM - Suitable for Water Absorption Test?			N/A		N/A	N/A
PAH-16MS Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(ah)anthracene Fluoranthene Fluorene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01	<0.01 <0.02 <0.04 <0.05 <0.05 <0.05 <0.07 <0.06 <0.04 <0.08 <0.01		0.08 0.04 0.13 0.19 0.13 0.16 <0.05 <0.07 0.23 <0.04 0.41 0.1	<0.01 0.04 0.07 0.49 0.57 0.33 0.21 0.53 0.07 0.66 <0.01

Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom Date Sampled		Limit of Detection	19/12154/6 2 TT02 1.00 04-Dec-19	19/12154/7 3 TT02 2.00 04-Dec-19	19/12154/8 4 TT02 3.00 04-Dec-19	19/12154/10 2 TT03 1.00 04-Dec-19
Sample Type	Units	mit	Soil - ES	Soil - ES	Soil - ES	Soil - ES
Sample Matrix Code	5	Ē	4AE	4AE	4AE	4AE
Indeno(123-cd)pyrene	mg/kg	0.03	<0.03		0.06	0.37
Naphthalene	mg/kg	0.03	<0.03		0.28	< 0.03
Phenanthrene	mg/kg	0.03	<0.03		0.55	0.23
Pyrene	mg/kg	0.07	<0.07		0.35	0.64
Total PAH-16MS	mg/kg	0.01	<0.08		2.71	4.7
TPH UKCWG						
Ali >C5-C6	mg/kg	0.01	<0.01		<0.01	<0.01
Ali >C6-C8	mg/kg	0.01	<0.01		<0.01	<0.01
Ali >C8-C10	mg/kg	1	<1		<1	<1
Ali >C10-C12	mg/kg	1	<1		<1	<1
Ali >C12-C16	mg/kg	1	<1		1	1
Ali >C16-C21	mg/kg	1	4		3	7
Ali >C21-C35	mg/kg	1	142		5	174
Ali >C35-C44	mg/kg	1	17		1	15
Total Aliphatics	mg/kg	1	162		11	196
Aro >C5-C7	mg/kg	0.01	<0.01		<0.01	<0.01
Aro >C7-C8	mg/kg	0.01	<0.01		<0.01	<0.01
Aro >C8-C10	mg/kg	1	3		3	3
Aro >C10-C12	mg/kg	1	1		4	1
Aro >C12-C16	mg/kg	1	1		11	3
Aro >C16-C21	mg/kg	1	4		21	17
Aro >C21-C35	mg/kg	1	33		31	163
Aro >C35-C44	mg/kg	1	17		3	9
Total Aromatics	mg/kg	1	61		74	198
TPH (Ali & Aro >C5-C44)	mg/kg	1	223		85	394
BTEX - Benzene	mg/kg	0.01	<0.01		<0.01	<0.01
BTEX - Toluene	mg/kg	0.01	<0.01		<0.01	<0.01
BTEX - Ethyl Benzene	mg/kg	0.01	<0.01		<0.01	<0.01
BTEX - m & p Xylene	mg/kg	0.01	<0.01		<0.01	<0.01
BTEX - o Xylene	mg/kg	0.01	<0.01		<0.01	<0.01
MTBE	mg/kg	0.01	<0.01		<0.01	<0.01

Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom		Limit of Detection	19/12154/11 3 TT03 2.00	19/12154/14 2 TT04 1.00	19/12154/16 4 TT04 3.60	19/12154/19 6 WS01 1.00
Date Sampled Sample Type Sample Matrix Code	Units		04-Dec-19 Soil - ES 4AE	04-Dec-19 Soil - ES 4AE	04-Dec-19 Soil - ES	03-Dec-19 Soil - ES 4AE
% Moisture at <40C % Stones >10mm	% w/w % w/w	0.1 0.1	19.9	19.4		1.1
pH	pH	0.01	15.5	13.4		1.1
pH BRE	рН	0.01	7.17	7.12	3.89	6.78
Ammonium NH4 BRE (water sol						
2:1) Chloride BRE, SO4 equiv.	mg/l	1	3.67	4.13		3.54
(water sol 2:1) Nitrate BRE, SO4 equiv. (water	mg/l	7	<7	16	<7	<7
sol 2:1)	mg/l	0.4	31.8	7.4	29.4	4.9
Sulphate (water sol 2:1)	g/l	0.01				
Sulphate BRE (water sol 2:1)	mg/l	10	1120	395	539	26
Sulphate BRE (acid sol)	% w/w	0.02	0.69	0.35		0.12
Sulphur BRE (total)	% w/w	0.01	0.34	0.22	0.27	0.11
Magnesium BRE (water sol 2:1) Cyanide (free)	mg/l mg/kg	1 1	50	15	84	8
Phenols - Total by HPLC	mg/kg	0.2				
Fraction of organic carbon	N/A	0.0003				
Arsenic	mg/kg	1				
Beryllium	mg/kg	0.5				
Boron (water soluble)	mg/kg	1				
Cadmium	mg/kg	0.5				
Copper	mg/kg	1				
Chromium (hoveyalant)	mg/kg	1				
Chromium (hexavalent) Chromium (trivalent)	mg/kg mg/kg	1 1				
Lead	mg/kg	1				
Mercury	mg/kg	0.17				
Nickel	mg/kg	1				
Selenium	mg/kg	1				
Vanadium	mg/kg	1				
Zinc	mg/kg	5				
Asbestos in Soil (inc. matrix) Asbestos in soil Asbestos ACM - Suitable for Water Absorption Test?						
PAH-16MS						
Acenaphthene	mg/kg	0.01				
Acenaphthylene	mg/kg	0.01				
Anthracene	mg/kg	0.02				
Benzo(a)anthracene	mg/kg	0.04				
Benzo(a)pyrene	mg/kg	0.04				
Benzo(b)fluoranthene Benzo(ghi)perylene	mg/kg mg/kg	0.05 0.05				
Benzo(gni)perviene Benzo(k)fluoranthene	mg/kg mg/kg	0.05				
Chrysene	mg/kg	0.06				
Dibenzo(ah)anthracene	mg/kg	0.00				
Fluoranthene	mg/kg	0.08				
Fluorene	mg/kg	0.01				

Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom Date Sampled Sample Type Sample Matrix Code	Units	Limit of Detection	19/12154/11 3 TT03 2.00 04-Dec-19 Soil - ES 4AE	19/12154/14 2 TT04 1.00 04-Dec-19 Soil - ES 4AE	19/12154/16 4 TT04 3.60 04-Dec-19 Soil - ES	19/12154/19 6 WS01 1.00 03-Dec-19 Soil - ES 4AE
Indeno(123-cd)pyrene	mg/kg	0.03				
Naphthalene	mg/kg	0.03				
Phenanthrene	mg/kg	0.03				
Pyrene	mg/kg	0.07				
Total PAH-16MS	mg/kg	0.01				
	0 0					
TPH UKCWG						
Ali >C5-C6	mg/kg	0.01				
Ali >C6-C8	mg/kg	0.01				
Ali >C8-C10	mg/kg	1				
Ali >C10-C12	mg/kg	1				
Ali >C12-C16	mg/kg	1				
Ali >C16-C21	mg/kg	1				
Ali >C21-C35	mg/kg	1				
Ali >C35-C44	mg/kg	1				
Total Aliphatics	mg/kg	1				
Aro >C5-C7	mg/kg	0.01				
Aro >C7-C8	mg/kg	0.01				
Aro >C8-C10	mg/kg	1				
Aro >C10-C12	mg/kg	1				
Aro >C12-C16	mg/kg	1				
Aro >C16-C21	mg/kg	1				
Aro >C21-C35	mg/kg	1				
Aro >C35-C44	mg/kg	1				
Total Aromatics	mg/kg	1				
TPH (Ali & Aro >C5-C44)	mg/kg	1				
BTEX - Benzene	mg/kg	0.01				
BTEX - Toluene	mg/kg	0.01				
BTEX - Ethyl Benzene	mg/kg	0.01				
BTEX - m & p Xylene	mg/kg	0.01				
BTEX - o Xylene	mg/kg	0.01				
MTBE	mg/kg	0.01				

Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom Date Sampled Sample Type	Its	Limit of Detection	19/12154/21 11 WS01 2.50 03-Dec-19 Soil - ES	19/12154/26 8 WS06A 2.40 05-Dec-19 Soil - ES	19/12154/27 11 WS06A 3.50 05-Dec-19 Soil - ES	19/12154/30 5 WS03 0.90 03-Dec-19 Soil - ES
Sample Matrix Code	Units	Li		0011-20		
% Moisture at <40C	% w/w	0.1				
% Stones >10mm pH	% w/w pH	0.1 0.01				
pH BRE	рн pH	0.01	7.34	7.59	7.11	7.58
Ammonium NH4 BRE (water sol	P	0.01				
2:1) Chloride BRE, SO4 equiv.	mg/l	1				
(water sol 2:1)	mg/l	7	<7	12	17	<7
Nitrate BRE, SO4 equiv. (water	-					
sol 2:1)	mg/l	0.4	27.5	11.8	40.8	1.8
Sulphate (water sol 2:1)	g/l	0.01	101	115	1540	45
Sulphate BRE (water sol 2:1) Sulphate BRE (acid sol)	mg/l % w/w	10 0.02	101	115	1540	45
Sulphur BRE (total)	% w/w	0.01	0.22	0.18		0.16
Magnesium BRE (water sol 2:1)	mg/l	1	13	12	40	10
Cyanide (free)	mg/kg	1				
Phenols - Total by HPLC Fraction of organic carbon	mg/kg N/A	0.2 0.0003				
Arsenic	mg/kg	1				
Beryllium	mg/kg	0.5				
Boron (water soluble)	mg/kg	1				
Cadmium	mg/kg	0.5				
Copper	mg/kg	1				
Chromium Chromium (hexavalent)	mg/kg mg/kg	1 1				
Chromium (trivalent)	mg/kg	1				
Lead	mg/kg	1				
Mercury	mg/kg	0.17				
Nickel	mg/kg	1				
Selenium	mg/kg	1 1				
Vanadium Zinc	mg/kg mg/kg	5				
Asbestos in Soil (inc. matrix) Asbestos in soil Asbestos ACM - Suitable for Water Absorption Test?						
PAH-16MS Acenaphthene	mg/kg	0.01				
Acenaphthylene	mg/kg	0.01				
Anthracene	mg/kg	0.02				
Benzo(a)anthracene	mg/kg	0.04				
Benzo(a)pyrene	mg/kg	0.04				
Benzo(b)fluoranthene Benzo(ghi)perylene	mg/kg	0.05				
Benzo(gni)perviene Benzo(k)fluoranthene	mg/kg mg/kg	0.05 0.07				
Chrysene	mg/kg	0.06				
Dibenzo(ah)anthracene	mg/kg	0.04				
Fluoranthene	mg/kg	0.08				
Fluorene	mg/kg	0.01				

Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom Date Sampled Sample Type Sample Matrix Code	Units	Limit of Detection	19/12154/21 11 WS01 2.50 03-Dec-19 Soil - ES	19/12154/26 8 WS06A 2.40 05-Dec-19 Soil - ES	19/12154/27 11 WS06A 3.50 05-Dec-19 Soil - ES	19/12154/30 5 WS03 0.90 03-Dec-19 Soil - ES
Indeno(123-cd)pyrene	mg/kg	0.03				
Naphthalene	mg/kg	0.03				
Phenanthrene	mg/kg	0.03				
Pyrene	mg/kg	0.07				
Total PAH-16MS	mg/kg	0.01				
TRULUKOWO						
	·····	0.01				
Ali >C5-C6	mg/kg	0.01				
Ali >C6-C8	mg/kg	0.01				
Ali >C8-C10	mg/kg	1				
Ali >C10-C12	mg/kg	1				
Ali >C12-C16	mg/kg	1				
Ali >C16-C21	mg/kg	1				
Ali >C21-C35	mg/kg	1				
Ali >C35-C44	mg/kg	1				
Total Aliphatics	mg/kg	1				
Aro >C5-C7	mg/kg	0.01				
Aro >C7-C8	mg/kg	0.01				
Aro >C8-C10	mg/kg	1				
Aro >C10-C12	mg/kg	1				
Aro >C12-C16	mg/kg	1				
Aro >C16-C21	mg/kg	1				
Aro >C21-C35	mg/kg	1				
Aro >C35-C44	mg/kg	1				
Total Aromatics	mg/kg	1				
TPH (Ali & Aro >C5-C44)	mg/kg	1				
BTEX - Benzene	mg/kg	0.01				
BTEX - Toluene	mg/kg	0.01				
BTEX - Ethyl Benzene	mg/kg	0.01				
BTEX - m & p Xylene	mg/kg	0.01				
BTEX - o Xylene	mg/kg	0.01				
МТВЕ	mg/kg	0.01				

Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom Date Sampled Sample Type Sample Matrix Code	Units	Limit of Detection	19/12154/34 14 WS05 4.50 05-Dec-19 Soil - ES	19/12154/35 17 WS05 5.50 05-Dec-19 Soil - ES
% Moisture at <40C	% w/w	0.1		
% Stones >10mm	% w/w	0.1		
pH	pH	0.01		7.17
pH BRE	рН	0.01	7.43	7.17
Ammonium NH4 BRE (water sol	···· ·· //	4		
2:1)	mg/l	1		
Chloride BRE, SO4 equiv.	ma/l	7	13	<7
(water sol 2:1) Nitrate BRE, SO4 equiv. (water	mg/l	I	15	~/
sol 2:1)	mg/l	0.4	119	48
Sulphate (water sol 2:1)	g/l	0.4	119	1.16
Sulphate BRE (water sol 2:1)	mg/l	10	1540	1160
Sulphate BRE (acid sol)	% w/w	0.02	1010	
Sulphur BRE (total)	% w/w	0.01	0.8	0.11
,				
Magnesium BRE (water sol 2:1)	mg/l	1	76	106
Cyanide (free)	mg/kg	1		1
Phenols - Total by HPLC	mg/kg	0.2		<0.2
Fraction of organic carbon	N/A	0.0003		0.0616
Arsenic	mg/kg	1		17
Beryllium	mg/kg	0.5		1.2
Boron (water soluble)	mg/kg	1		3.1
Cadmium	mg/kg	0.5		1.6
Copper	mg/kg	1		116
Chromium	mg/kg	1		22
Chromium (hexavalent)	mg/kg	1		<1
Chromium (trivalent)	mg/kg	1 1		22
Lead	mg/kg	ا 0.17		135 <0.17
Mercury Nickel	mg/kg	0.17		31
Selenium	mg/kg mg/kg	1		1
Vanadium	mg/kg	1		25
Zinc	mg/kg	5		166
	ilig/kg	5		100
Asbestos in Soil (inc. matrix) Asbestos in soil				NAD
Asbestos ACM - Suitable for				
Water Absorption Test?				N/A
DALL 4CMC				
PAH-16MS	malka	0.01		0.05
Acenaphthene Acenaphthylene	mg/kg mg/kg	0.01 0.01		0.05 0.01
Acenaphinylene Anthracene	mg/kg mg/kg	0.01		0.01
Benzo(a)anthracene	mg/kg	0.02		0.25
Benzo(a)pyrene	mg/kg	0.04		0.23
Benzo(b)fluoranthene	mg/kg	0.04		0.23
Benzo(ghi)perylene	mg/kg	0.05		0.16
Benzo(k)fluoranthene	mg/kg	0.05		0.1
Chrysene	mg/kg	0.06		0.29
Dibenzo(ah)anthracene	mg/kg	0.04		<0.04
Fluoranthene	mg/kg	0.08		0.46
Fluorene	mg/kg	0.01		0.04

Lab Sample ID Client Sample No Client Sample ID Depth to Top Depth to Bottom Date Sampled Sample Type Sample Matrix Code	Units	Limit of Detection	19/12154/34 14 WS05 4.50 05-Dec-19 Soil - ES	19/12154/35 17 WS05 5.50 05-Dec-19 Soil - ES
Indeno(123-cd)pyrene	mg/kg	0.03		0.18
Naphthalene	mg/kg	0.03		<0.03
Phenanthrene	mg/kg	0.03		0.38
Pyrene	mg/kg	0.07		0.42
Total PAH-16MS	mg/kg	0.01		2.96
TPH UKCWG				
Ali >C5-C6	mg/kg	0.01		<0.01
Ali >C6-C8	mg/kg	0.01		<0.01
Ali >C8-C10	mg/kg	1		<1
Ali >C10-C12	mg/kg	1		<1
Ali >C12-C16	mg/kg	1		<1
Ali >C16-C21	mg/kg	1		<1
Ali >C21-C35	mg/kg	1		9
Ali >C35-C44	mg/kg	1		12
Total Aliphatics	mg/kg	1		21
Aro >C5-C7	mg/kg	0.01		<0.01
Aro >C7-C8	mg/kg	0.01		<0.01
Aro >C8-C10	mg/kg	1		2
Aro >C10-C12	mg/kg	1		<1
Aro >C12-C16	mg/kg	1		2
Aro >C16-C21	mg/kg	1		3
Aro >C21-C35	mg/kg	1		11
Aro >C35-C44	mg/kg	1		8
Total Aromatics	mg/kg	1		25
TPH (Ali & Aro >C5-C44)	mg/kg	1		46
BTEX - Benzene	mg/kg	0.01		<0.01
BTEX - Toluene	mg/kg	0.01		<0.01
BTEX - Ethyl Benzene	mg/kg	0.01		<0.01
BTEX - m & p Xylene	mg/kg	0.01		<0.01
BTEX - o Xylene	mg/kg	0.01		<0.01
MTBE	mg/kg	0.01		<0.01

Final Test Report

Envirolab Job Number: Issue Number:	19/12154 1	Date:	10-Jan-20
Client:	Central Alliance Alliance House South Park Way South Park Way Wakefield 41 Business Park Wakefield, WF2 0XJ		
Project Manager: Project Name: Project Ref: Order No:	Alice Wilton / Lab Results Dodworth Road 2370414 n\a		
Date Samples Received: Date Instructions Received: Date Analysis Completed:	6-Dec-19 20-Dec-19 10-Jan-20		

Notes - Soil analysis

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation. Please contact us if you need any further information.

Prepared by:

Manshall

Melanie Marshall Laboratory Coordinator

Approved by:

Hollybeary-king

Holly Neary-King Deputy Admin & Client Services SL

Landfill WAC analysis must not be used for hazardous waste classification purposes. This analysis is only applicable for landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Lak Cample ID	mple Detail	ls								
Lab Sample ID	Method	ISO17025	MCERTS	19/12154/7	,	Landfill Waste Acceptance Criteria Limits				
Client Sample Number				3						
Client Sample ID				TT02						
Depth to Top				2			Stable Non-reactive			
Depth to Bottom						Inert Waste Landfill	Hazardous Waste in Non-Hazardous	Hazardous Waste Landfill		
Date Sampled				04/12/2019)		Landfill	Landini		
Sample Type				Soil - ES			Landin			
Sample Matrix Code				4AE						
Solid Waste Analysis										
oH (pH Units) _D	A-T-031	Ν	Ν			-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.13		-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	Ν		0.02		-	to be evaluated	to be evaluated		
Loss on Ignition (%)	A-T-030	N	N	21		-	-	10		
Fotal Organic Carbon (%) _D	A-T-032	N	N	17.9		3	5	6		
PAH Sum of 17 (mg/kg) $_{A}$	A-T-019	N	N			100	-	-		
Mineral Oil (mg/kg) _A	A-T-013 A-T-007	N				500	-	-		
Sum of 7 PCBs (mg/kg) _A	A-T-007	N	N			1	-	-		
Sum of BTEX (mg/kg) _A	A-T-004	N				6	-	-		
	A-1-022	IN	IN	10.1	10.1	-	- far compliance locabin	-		
Eluate Analysis				10:1	10:1	Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 l/kg (mg/kg)				
Arsenic	A-T-025	N	Ν	mg/l	mg/kg 0.010	0.5	2	25		
Barium	A-T-025 A-T-025	N		0.001	0.010	20	100	300		
Cadmium	A-T-025 A-T-025	N	N	<0.001	<0.01	0.04	1	5		
Chromium	A-T-025 A-T-025	N	N	0.003	0.030	0.04	10	70		
Copper	A-T-025	N		0.005	0.030	2	50	100		
Mercury	A-T-025	N	N	< 0.0005	< 0.005	0.01	0.2	2		
Molybdenum	A-T-025	N	N	0.012	0.120	0.5	10	30		
Nickel	A-T-025	N	N	<0.0012	<0.01	0.4	10	40		
_ead	A-T-025	N	N	0.002	0.020	0.5	10	50		
Antimony	A-T-025	N	N	0.002	0.020	0.06	0.7	5		
Selenium	A-T-025	N	N	<0.002	<0.01	0.1	0.5	7		
Zinc	A-T-025	N	N	0.012	0.120	4	50	200		
	A-T-026	N	N	<1.00	<10	800	15000	25000		
		N	N	0.2	2.0	10	150	500		
Chloride	A-1-026									
Chloride Fluoride	A-T-026	-				-		50000		
Chloride Fluoride Sulphate as SO ₄	A-T-026	Ν	Ν	32	318	1000	20000	50000 100000		
Chloride Fluoride Sulphate as SO ₄ Fotal Dissolved Solids	A-T-026 A-T-035	N N	N N	32 109	318 1090	1000 4000		50000 100000		
Chloride Fluoride Sulphate as SO ₄ Fotal Dissolved Solids Phenol Index	A-T-026 A-T-035 A-T-050	N N N	N N N	32 109 <0.01	318 1090 <0.1	1000 4000 1	20000 60000	100000		
Chloride Fluoride Sulphate as SO ₄ Fotal Dissolved Solids Phenol Index Dissolved Organic Carbon	A-T-026 A-T-035	N N	N N	32 109	318 1090	1000 4000	20000 60000			
Chloride Fluoride Sulphate as SO ₄ Fotal Dissolved Solids Phenol Index Dissolved Organic Carbon Leach Test Information	A-T-026 A-T-035 A-T-050 A-T-032	N N N	N N N N	32 109 <0.01 <0.2	318 1090 <0.1	1000 4000 1	20000 60000	100000		
Chloride Fluoride Sulphate as SO ₄ Fotal Dissolved Solids Phenol Index Dissolved Organic Carbon Leach Test Information H (pH Units)	A-T-026 A-T-035 A-T-050	N N N	N N N N N N N N N N N N N N N N N N N	32 109 <0.01 <0.2 7.6	318 1090 <0.1	1000 4000 1	20000 60000	100000		
Chloride Fluoride Sulphate as SO ₄ Fotal Dissolved Solids	A-T-026 A-T-035 A-T-050 A-T-032 A-T-031	N N N	N N N N	32 109 <0.01 <0.2	318 1090 <0.1	1000 4000 1	20000 60000	100000		

Client: Barnsley MBC Structure: Penny Pie Park Footbridge OS grid ref: SE 328 064

APPENDIX II

Geotechnical Risk Register

			Initial	Risk Rating				Hazard Rating after Mitigation Measures				
	Hazard/Risk	Cause	Probability of Hazard	Impact of Hazard	Risk Rating	Mitigation Measures	Probability of Hazard	Impact of Hazard	Risk Rating			
1	1 5	Made ground has been proven to contain hazardous materials.	3	4	12	Refer to Section 9 of the Ground Investigation Report.	1	4	4			
2		Varying thicknesses and compositions of the made ground.	2	3	6	 Resurfacing of the footpath is settleme occurs. 	nt 1	3	3			
3	Buried services.	Injury or death due to striking or damaging buried cables	3	5	15	 Location of known services reviewed; proposed works positioned to minimise impact. Area to be CAT scanned and position any buried services marked out prior to breaking ground 	of	5	5			

Table 1 – Geotechnical Risk Register

Probability			Impact	
Very Likely	5	-	Very High	5
Likely	4	-	High	4
Probable	3	-	Medium	3
Unlikely	2	-	Low	2
Negligible	1	-	Very Low	1